adjustment procedure
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 44)

H-INDEX

14
(FIVE YEARS 2)

Eng ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 27-41
Author(s):  
Michael V. Vesnik

The paper formulates the foundations of a recently developed approach, named the method of fundamental components, intended for constructing heuristic solutions in problems of electromagnetic diffraction, for the first time. The difference between the new method and the known heuristic approaches lies in the application of an adjustment procedure that increases the accuracy. The possibility of the mentioned method for obtaining new results is illustrated with the help of the author’s previously published works. The advantages of the new method in constructing high-speed solvers and in the physical interpretation of numerical solutions are shown.


2022 ◽  
Vol 961 (1) ◽  
pp. 012046
Author(s):  
A H Hilal ◽  
O Z Jasim ◽  
H S Ismael

Abstract Ground Control Points GCPs are the only way to obtain accurate positions in aerial surveys. At least three points should be utilized, and the model will get increasingly accurate in X, Y, and Z coordinates as the number rises. The accuracy of the 3D model created from aerial photography is also affected by the arrangement of GCPs. The goal of this research is to determine the optimal number and arrangement of GCPs in order to obtain the lowest possible error in point positioning. A conventional UAV called DJI Mavic 2 pro was used to photograph one and a half square kilometer site at an elevation equal to hundred meters from earth’s surface with nadir camera configuration. GSD (ground sampling distance) of 2.3 centimeters was used to collect 1515 pictures. 62 GCPs were observed in PPK (Post Processing kinematic) method using a DGPS (differential global positioning system) receiver GS 15 from Leica. The study area was split into two areas, one with a straight arrangement of GCPs and the other with a diagonal arrangement of GCPs. The pictures were processed using 3Dsurvey and 3DF Zephyr software utilizing a full bundle adjustment procedure with increasing GCPs number beginning with three GCPs and ending with twenty-six GCPs for both arrangement layout, with the other points serving as check points for the model’s accuracy at each attempt. The check point coordinates obtained were compared to the DGPS coordinates. The result indicates the optimal GCP number needed for the most accurate position and spread layout. That the minimum gap between adjacent GCPs ought to be not over than 100 meters and spread homogenously.


2021 ◽  
Vol 6 (13 (114)) ◽  
pp. 80-93
Author(s):  
Yuri Pozdnyakov ◽  
Zoryana Skybinska ◽  
Tetiana Gryniv ◽  
Igor Britchenko ◽  
Peter Losonczi ◽  
...  

This paper addresses the field of economic measurements of the value of assets, carried out by the methods of independent expert evaluation. The mathematical principles of application, within a comparative methodical approach, of additive and multiplicative models for correcting the cost of single indicator of compared objects have been considered. The differences of mathematical basis of the compared models were analyzed. It has been shown that the ambiguity in the methodology of correction procedure requires studying the advantages and disadvantages of known models, as well as the justification and elaboration of recommendations for their application. Possible forms of correction representation using several alternative units of measurement have been defined; formulas for their interconnection have been built. Analytic expressions have been derived that mathematically describe the algorithms for performing the evaluation correction procedure using various forms of correction representation. The influence of the correction execution model on the characteristics of uncertainty in the independent evaluation result has been analyzed. The scope of two possible types of correction introduction models has been determined. A specific numerical example was used to demonstrate the methodological advantages of using a multiplicative model when summarizing percentage corrections. The independence of the correction result on the sequence of correction introduction has been confirmed. It is proposed to use the selected measure of partial corrections as a criterion for the adequacy of the correction introduction model. It is proved that the result of the independent expert evaluation depends on the chosen model and does not depend on the sequence of correction introduction. The reported study results are important in terms of theory and practice since they make it possible to improve the accuracy and reliability of the result of independent expert evaluation.


Author(s):  
Karolina Anna Orłowska ◽  
Bartosz Michał Świadkowski ◽  
Andrzej Sierakowski ◽  
Teodor Gotszalk

Abstract In this paper we present a metrological measurement technique that is a combination of fibre optic interferometry and a microelectromechanical system (MEMS) sensor for photon force (PF) measurement with traceability via an electromagnetic way. The main advantage of the presented method is the reference to the current balance, which is the primary mass/force metrological standard. The MEMS cantilever is a transducer of the photon force to the deflection that can be compensated with the use of the Lorentz force. This movement is measured with the use of the interferometer and does not require any mechanical calibration. Combining the MEMS current balance system with the interferometry is then the unique and fully metrological solution. The resolution of the proposed measurement technique is calculated to be 4 pN//Hz^(0.5) (2% uncertainty). The PF–MEMS used for the investigation is the cantilever with the resolution of 46 fN/Hz0.5, which was calculated from the thermomechanical noise, and is far below the whole system resolution limit. As far as the whole construction is based on the fibre optic system, it does not require any complex adjustment procedure and may work as an optomechanical reference in any metrological laboratory.


2021 ◽  
Vol 56 (5) ◽  
pp. 552-562
Author(s):  
Mohd Azwan Abbas ◽  
Norshahrizan Mohd Hashim ◽  
Mohamad Faiz Mohd Zaim ◽  
Muhammad Husaini Ya’cob ◽  
Ahmad Azmi Hashim ◽  
...  

The demand for positional accuracy and multi-dimensional data have demonstrated drastic changes in the geomatics data adjustment approach. Furthermore, the capability of modern sensors to provide high accuracy data (i.e., global navigation satellite system) has caused the crucial requirement for a rigorous adjustment that can process data from multi-sensors. Geomatics practitioners have gradually transformed the adjustment procedure to the most rigorous approach (i.e., parametric linear regression) to adapt to current demand. However, legacy datasets that utilize independent line constraint in the traditional adjustment approach have caused significant uncertainties in parametric linear regression (LR) adjustment. To resolve this dilemma, this research has designed robust experiments using closed traverse types: single-line constraint, multi-line constraints, and sub-network line constraint. Through errors trend and network form deterioration analyses, the outcomes have visually and numerically verified the insignificant of independent line constraints in parametric LR. However, the establishment of control points at the beginning or end of lines could solve the limitation of the abovementioned issue. In both analyses, control points at initial lines have demonstrated the best solution for constrained adjustment. The obtained results have exemplified the appropriate implementation of network adjustment in the presence of line constraints. As positional accuracy becomes the main priority, it can be concluded that points-based constraints are more advisable in preserving the quality of cadastral network adjustment.


Author(s):  
Lars Daul ◽  
Tao Jin ◽  
Ingo Busch ◽  
Ludger Koenders ◽  
Rudolf Meeß ◽  
...  

2021 ◽  
Vol 87 (10) ◽  
pp. 705-716
Author(s):  
Lisa M. LaForest ◽  
Tian Zhou ◽  
Seyyed Meghdad Hasheminasab ◽  
Ayman Habib

Unmanned aerial vehicles (UAVs ) equipped with imaging sensors and integrated global navigation satellite system/inertial navigation system (GNSS/INS ) units are used for numerous applications. Deriving reliable 3D coordinates from such UAVs is contingent on accurate geometric calibration, which encompasses the estimation of mounting parameters and synchronization errors. Through a rigorous impact analysis of such systematic errors, this article proposes a direct approach for spatial and temporal calibration (estimating system parameters through a bundle adjustment procedure) of a GNSS/INS -assisted pushbroom scanner onboard a UAV platform. The calibration results show that the horizontal and vertical accuracies are within the ground sampling distance of the sensor. Unlike for frame camera systems, this article also shows that the indirect approach is not a feasible solution for pushbroom scanners due to their limited ability for decoupling system parameters. This finding provides further support that the direct approach is recommended for spatial and temporal calibration of UAV pushbroom scanner systems.


2021 ◽  
pp. 1-118
Author(s):  
Nadine de Courtenay

Abstract The philosophical significance attached to the construction of systems of units has traditionally been confined to the notion of convention, while their adoption was considered to be the exclusive province of the history and sociology of science. Against this tradition, a close articulation between history, philosophy, and sociology of science is needed in order to analyse the recent reform of the International system of units (SI). In the new SI, units are redefined on the basis of certain fundamental constants of nature, established by physical theories, whose values are fixed without uncertainty. The purpose of this article is to show that the redefinition of SI units, far from being a convention, involves a holistic reconstruction of our concepts of quantities from accepted theoretical laws. Fixing the values of the defining constants stabilizes these laws within the framework of physics through a twofold adjustment procedure that ensures both a semantic coordination between theory and world and an intersubjective coordination between human agents required by social activities. This double adjustment results in closely entwining the pursuit of truth as correspondence and truth as coherence which turn out to be complementary, thus highlighting the anthropological underpinnings of scientific realism.


Author(s):  
V. Mousavi ◽  
M. Varshosaz ◽  
F. Remondino

Abstract. Image orientation is a fundamental task in photogrammetric applications and it is performed by extracting keypoints with hand-crafted or learning-based methods, generating tie points among the images and running a bundle adjustment procedure. Nowadays, due to large number of extracted keypoints, tie point filtering approaches attempt to eliminate redundant tie points in order to increase accuracy and reduce processing time. This paper presents the results of an investigation concerning tie points impact on bundle adjustment results. Simulations and real data are processed in Australis and DBAT to evaluate different affecting factors, including tie point numbers, location accuracy, distribution and multiplicity. Achieved results show that increasing the amount of tie points improve the quality of bundle adjustment results, provided that the tie points are well-distributed on the image. Furthermore, bundle adjustment quality is improved as the multiplicity of tie points increases and their location uncertainty decrease. Based on simulation results, some suggestions for accurate tie points filtering in typical UAV photogrammetry blocks cases are derived.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 667
Author(s):  
Simona Tecco ◽  
Vincenzo Quinzi ◽  
Alessandro Nota ◽  
Alessandro Giovannozzi ◽  
Maria Rosaria Abed ◽  
...  

Background: The purpose of this study is to evaluate the effect of an electromyography-guided adjustment of an occlusal appliance on the management of Temporomandibular disorder-related pain. Methods: Data from 40 adult patients (20 males and 20 females), who underwent treatment with occlusal appliances, were recorded. A total of 20 appliances were adjusted according to electromyographic data (group 1), while the others were adjusted by a clinical conventional procedure (group 2). Muscle pain to palpation, pain during articular movements and headache were recorded by a VAS score (from 0 to 100) before the beginning of treatment (T0), at T1 (4 weeks) and T2 (8 weeks). Results: Results showed a reduction of pain in both groups, with a better trend for group 1, where better results were achieved at T1 and maintained stability at T2, with an improved mean value regarding all parameters studied. After 8 weeks, only small recurrences started to occur in muscle pain to palpation in group 2. Conclusions: An occlusal appliance seems to be able to achieve a clinical improvement of Temporomandibular disorder (TMD)-related pain and headache, independently from the adjustment procedure adopted. However, the use of a surface electromyographic activity of masticatory muscles (sEMG) device as an aid in the calibration procedure seems to allow a better trend because the improvement of symptoms was obtained before, after the first four weeks, with an improvement in percentages of all the variables investigated. While the conventional procedure obtained later the improvement.


Sign in / Sign up

Export Citation Format

Share Document