scholarly journals Thermodynamic Properties of Helium at Low Temperatures and High Pressures

1959 ◽  
Vol 81 (4) ◽  
pp. 323-326 ◽  
Author(s):  
D. B. Mann ◽  
R. B. Stewart

The thermodynamic properties of helium have been compiled and correlated for a temperature range from 3.0 to 20° K for pressures to 100 atmospheres and for specific volumes from 5 to 800 liters per kilogram. The properties are presented on both the temperature-entropy and the enthalpy-entropy co-ordinate systems and include pressure, temperature, volume, entropy, and enthalpy.

2017 ◽  
Vol 31 (28) ◽  
pp. 1750202 ◽  
Author(s):  
A. F. Al-Maaitah ◽  
A. S. Sandouqa ◽  
B. R. Joudeh ◽  
H. B. Ghassib

The quantum second virial coefficient B[Formula: see text] of 3He[Formula: see text] gas is determined in the temperature range 0.001–4 K from the Beth–Uhlenbeck formula. The corresponding phase shifts are calculated from the Lippmann–Schwinger equation using a highly-accurate matrix-inversion technique. A positive B[Formula: see text] corresponds to an overall repulsive interaction; whereas a negative B[Formula: see text] represents an overall attractive interaction. It is found that in the low-energy limit, B[Formula: see text] tends to increase with increasing spin polarization. The compressibility Z is evaluated as another measure of nonideality of the system. Z becomes most significant at low temperatures and increases with polarization. From the pressure–temperature (P–T) behavior of 3He[Formula: see text] at low T, it is deduced that P decreases with increasing T below 8 mK.


Author(s):  
A.M. Magerramov ◽  
◽  
N.I. Kurbanova ◽  
M.N. Bayramov ◽  
N.A. Alimirzoyeva ◽  
...  

Using radiothermoluminescence (RTL), the molecular mobility features in the temperature range of 77-300 K were studied for the polypropylene (PP)/ethylene propylene diene elastomer SKEPT-4044 with NiO, Cu2O and Fe3O4 nanoparticles (NPs) based on ABS-acrylonitrile butadiene or SCS-divinyl styrene matrices. It has been shown that the introduction of nanofillers in PP significantly affects the nature and temperature of γ- and β-relaxation processes, while the region of manifestation of the β-process noticeably shifts to the region of low temperatures. Composites with Cu2O NPs have a higher β-transition temperature Tβ than composites with other NPs. It was found that PP/SKEPT-4044 composites with Cu2O NPs with a dispersion of 11-15 nm and acrylonitrile butadiene thermoplastics have optimal frost resistance compared to other compositions.


1969 ◽  
Vol 11 (2) ◽  
pp. 189-205 ◽  
Author(s):  
E. A. Bruges ◽  
M. R. Gibson

Equations specifying the dynamic viscosity of compressed water and steam are presented. In the temperature range 0-100cC the location of the inversion locus (mu) is defined for the first time with some precision. The low pressure steam results are re-correlated and a higher inversion temperature is indicated than that previously accepted. From 100 to 600°C values of viscosity are derived up to 3·5 kilobar and between 600 and 1500°C up to 1 kilobar. All the original observations in the gaseous phase have been corrected to a consistent set of densities and deviation plots for all the new correlations are given. Although the equations give values within the tolerances of the International Skeleton Table it is clear that the range and tolerances of the latter could with some advantage be revised to give twice the existing temperature range and over 10 times the existing pressure range at low temperatures. A list of the observations used and their deviations from the correlating equations is available as a separate publication.


1964 ◽  
Vol 86 (3) ◽  
pp. 320-326 ◽  
Author(s):  
E. S. Nowak

A parametric equation of state was derived for water and water vapor in the critical region from experimental P-V-T data. It is valid in that part of the critical region encompassed by pressures from 3000 to 4000 psia, specific volumes from 0.0400 to 0.1100 ft3/lb, and temperatures from 698 to 752 deg F. The equation of state satisfies all of the known conditions at the critical point. It also satisfies the conditions along certain of the boundaries which probably separate “supercritical liquid” from “supercritical vapor.” The equation of state, though quite simple in form, is probably superior to any equation heretofore derived for water and water vapor in the critical region. Specifically, the deviations between the measured and computed values of pressure in the large majority of the cases were within three parts in one thousand. This coincides approximately with the overall uncertainty in P-V-T measurements. In view of these factors, the author recommends that the equation be used to derive values for such thermodynamic properties as specific heat at constant pressure, enthalpy, and entropy in the critical region.


Sign in / Sign up

Export Citation Format

Share Document