Numerical Solution of Elastoplastic Torsion of a Shaft of Rotational Symmetry

1949 ◽  
Vol 16 (2) ◽  
pp. 139-148
Author(s):  
R. P. Eddy ◽  
F. S. Shaw

Abstract Using relaxation methods, an approximate numerical solution is found of the stress distribution in a shaft of rotational symmetry, which is subjected to a torque of sufficient magnitude to cause portions of the material to yield. It is assumed that the material of which the shaft is composed is isotropic and yields according to the condition of von Mises. The particular problem investigated is a shaft with a collar; results are presented showing the elastoplastic boundary, and the stress distribution, for two different amounts of plastic deformation.

2004 ◽  
Vol 824 ◽  
Author(s):  
F. Sahtout Karoui ◽  
A. Karoui ◽  
G. Rozgonyi

AbstractThe elastic and plastic stress distribution in strained Si1−xGex heterostructure (x=0.2 and x=0.5), was investigated during the growth process using a nonlinear transient finite element modeling. The material plastic behavior is described by the von Mises yield criteria coupled with isotropic work hardening conditions. The calculated stress distribution during growth of the SiGe cap layer shows that the von Mises stress fluctuates strongly within the layers and at the interfaces. The surface of constant composition Si1−xGex layer is found under compressive stress in both cases. Within that layer the normal stress in the growth direction remains compressive for x=0.2, while it changes from compressive to tensile for x=0.5. In the graded layer the stress goes from tensile to compressive for x=0.5 and in the opposite way for x=0.2. High plastic deformation is observed in the layers, with the maximum von Mises plastic stress being higher for x=0.5 and localized in the SiGe graded region. The plastic strain vanishes monotonically up to 8 μ deep into the Si bulk substrate, in agreement with TEM images that revealed dislocation loops penetrating into the substrate. The time dependent analysis shows that elastic and plastic deformation appear almost instantaneously in the sublayers, while in the Si substrate it is delayed up to 300 s.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Savoldelli ◽  
Elodie Ehrmann ◽  
Yannick Tillier

AbstractWith modern-day technical advances, high sagittal oblique osteotomy (HSOO) of the mandible was recently described as an alternative to bilateral sagittal split osteotomy for the correction of mandibular skeletal deformities. However, neither in vitro nor numerical biomechanical assessments have evaluated the performance of fixation methods in HSOO. The aim of this study was to compare the biomechanical characteristics and stress distribution in bone and osteosynthesis fixations when using different designs and placing configurations, in order to determine a favourable plating method. We established two finite element models of HSOO with advancement (T1) and set-back (T2) movements of the mandible. Six different configurations of fixation of the ramus, progressively loaded by a constant force, were assessed for each model. The von Mises stress distribution in fixations and in bone, and bony segment displacement, were analysed. The lowest mechanical stresses and minimal gradient of displacement between the proximal and distal bony segments were detected in the combined one-third anterior- and posterior-positioned double mini-plate T1 and T2 models. This suggests that the appropriate method to correct mandibular deformities in HSOO surgery is with use of double mini-plates positioned in the anterior one-third and posterior one-third between the bony segments of the ramus.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879739 ◽  
Author(s):  
Pengyang Li ◽  
Lingxia Zhou ◽  
Fangyuan Cui ◽  
Quandai Wang ◽  
Meiling Guo ◽  
...  

When the load acting on a mechanical structure is greater than the yield strength of the material, the contact surface will undergo plastic deformation. Cumulative plastic deformation has an important influence on the lifespan of mechanical parts. This article presents a three-dimensional semi-analytical model based on the conjugate gradient method and fast Fourier transform algorithm, with the aim of studying the characteristic parameters of the contact region between a rigid ellipsoid and elasto-plastic half-space. Moreover, normal forces and tangential traction were considered, as well as the contact pressure resulting from various sliding speeds and friction coefficients. The contact pressure, effective plastic strain, von Mises stress, and residual stress were measured and shown to increase with increasing sliding velocity. Finally, when the friction coefficient, contact pressure, and effective plastic strain are increased, the von Mises stress is also shown to increase, whereas the residual stress decreases.


2016 ◽  
Vol 66 (2) ◽  
pp. 63-66
Author(s):  
Zbyněk Paška ◽  
František Fojtík ◽  
Petr Ferfecki

Abstract The aim of this work is to find out the components of stress tensor in plane specimens. For this purpose the photoelasticity methodology is used. In order to make this technique more comfortable for use, there was developed an algorithm in MATLAB program. The results are compared with numerical solution. The main advantages of the developed algorithm are the speed and the capabilities to extend to analyze the plastic deformation and strain conditions in the material during forming processes.


1955 ◽  
Vol 22 (3) ◽  
pp. 311-316
Author(s):  
P. G. Hodge

Abstract The centrifugal forces acting upon a rotating ray will produce longitudinal stresses along the ray. If the ray is not symmetric, these stresses will result not only in a longitudinal force, but also in a bending moment. A technique for finding the stress distribution in this case is developed and illustrated by means of simple examples. The limiting elastic speed and the maximum speed before large-scale plastic deformation commences are computed. An indication is given of how similar methods may be used to analyze a rotating disk with no plane of symmetry perpendicular to the axis.


Author(s):  
Ershad Mortazavian ◽  
Zhiyong Wang ◽  
Hualiang Teng

The complicated steel wheel and rail interaction on curve causes side wear on rail head. Thus, the cost of maintenance for the track on curve is significantly higher than that for track on a tangent. The objective of this research is to develop 3D printing technology for repairing the side wear. In this paper, the study examines induced residual thermal stresses on a rail during the cooling down process after 3D printing procedure using the coupled finite volume and finite element method for thermal and mechanical analysis respectively. The interface of the railhead and additive materials should conserve high stresses to prevent any crack initiation. Otherwise, the additive layer would likely shear off the rail due to crack propagation at the rail/additive interface. In the numerical analysis, a cut of 75-lb ASCE (American Society of Civil Engineers) worn rail is used as a specimen, for which a three-dimensional model is developed. The applied residual stresses, as a result of temperature gradient and thermal expansion coefficient mismatch between additive and rail materials, are investigated. At the beginning, the worn rail is at room temperature while the additive part is at a high initial temperature. Then, additive materials start to flow thermal energy into the worn rail and the ambient. The thermal distribution results from thermal analysis are then employed as thermal loads in the mechanical analysis to determine the von-Mises stress distribution as the decisive component. Then, the effect of preheating on residual stress distribution is studied. In this way, the thermo-mechanical analysis is repeated with an increase in railhead’s initial temperature. In thermal analysis, the temperature contours at different time steps for both the non-preheated and preheated cases indicate that preheating presents remarkably lower temperature gradient between rail and additive part and also represents a more gradual cooling down process to allow enough time for thermal expansion mismatch alignment. In mechanical analysis, the transversal von-Mises stress distribution at rail/additive interface is developed for all cases for comparison purposes. It is shown that preheating is a key factor to significantly reduce residual stresses by about 40% at all points along transversal direction of interface.


Sign in / Sign up

Export Citation Format

Share Document