The Limit Design of a Transversely Loaded Square Grid

1952 ◽  
Vol 19 (2) ◽  
pp. 153-158
Author(s):  
Jacques Heyman

Abstract An earlier paper discussed the derivation of a breakdown criterion for beams subjected to combined bending and torsion. The present paper deals with the limit design of grids, formed by two sets of parallel beams intersecting at right angles, subjected to transverse loading at the joints. This form of loading introduces both bending and twisting moments in the beams, and modes of failure under these combined actions are investigated. Exact solutions are determined for some simple grids, but general methods are demonstrated which lead to upper and lower bounds on the collapse load.

1956 ◽  
Vol 9 (4) ◽  
pp. 419
Author(s):  
W Freiberger

This paper deals with the problem of the plastic deformation of a beam under the action of three perfectly rough rigid dies, two dies applied to one side, one die to the other side of the beam, the single die being situated between the two others. It is treated as a problem of plane plastic flow. Discontinuous stress and velocity fields are assumed and upper and lower bounds for the pressure sufficient to cause pronounced plastic yielding determined by limit analysis.


10.37236/3872 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
David Eppstein

We prove upper and lower bounds on the size of the largest square grid graph that is a subgraph, minor, or shallow minor of a graph in the form of a larger square grid from which a specified number of vertices have been deleted. Our bounds are tight to within constant factors. We also provide less-tight bounds on analogous problems for higher-dimensional grids.


1961 ◽  
Vol 28 (2) ◽  
pp. 269-274 ◽  
Author(s):  
B. G. Neal

The value of the fully plastic moment of a beam is known to be reduced by both normal and shear forces, and their separate effects have been studied in some detail, but little attention has been paid to the reduction caused by normal and shear forces acting simultaneously. This problem is discussed with reference to a cantilever beam of rectangular cross section subjected to both shear and normal forces at the free end. Upper and lower bounds to the collapse load are determined, and the results are presented in the form of interaction relations between the shear and normal forces and the bending moment at the clamped end of the cantilever at collapse.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hui Lei ◽  
Gou Hu ◽  
Zhi-Jie Cao ◽  
Ting-Song Du

Abstract The main aim of this paper is to establish some Fejér-type inequalities involving hypergeometric functions in terms of GA-s-convexity. For this purpose, we construct a Hadamard k-fractional identity related to geometrically symmetric mappings. Moreover, we give the upper and lower bounds for the weighted inequalities via products of two different mappings. Some applications of the presented results to special means are also provided.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 512
Author(s):  
Maryam Baghipur ◽  
Modjtaba Ghorbani ◽  
Hilal A. Ganie ◽  
Yilun Shang

The signless Laplacian reciprocal distance matrix for a simple connected graph G is defined as RQ(G)=diag(RH(G))+RD(G). Here, RD(G) is the Harary matrix (also called reciprocal distance matrix) while diag(RH(G)) represents the diagonal matrix of the total reciprocal distance vertices. In the present work, some upper and lower bounds for the second-largest eigenvalue of the signless Laplacian reciprocal distance matrix of graphs in terms of various graph parameters are investigated. Besides, all graphs attaining these new bounds are characterized. Additionally, it is inferred that among all connected graphs with n vertices, the complete graph Kn and the graph Kn−e obtained from Kn by deleting an edge e have the maximum second-largest signless Laplacian reciprocal distance eigenvalue.


2020 ◽  
Vol 26 (2) ◽  
pp. 131-161
Author(s):  
Florian Bourgey ◽  
Stefano De Marco ◽  
Emmanuel Gobet ◽  
Alexandre Zhou

AbstractThe multilevel Monte Carlo (MLMC) method developed by M. B. Giles [Multilevel Monte Carlo path simulation, Oper. Res. 56 2008, 3, 607–617] has a natural application to the evaluation of nested expectations {\mathbb{E}[g(\mathbb{E}[f(X,Y)|X])]}, where {f,g} are functions and {(X,Y)} a couple of independent random variables. Apart from the pricing of American-type derivatives, such computations arise in a large variety of risk valuations (VaR or CVaR of a portfolio, CVA), and in the assessment of margin costs for centrally cleared portfolios. In this work, we focus on the computation of initial margin. We analyze the properties of corresponding MLMC estimators, for which we provide results of asymptotic optimality; at the technical level, we have to deal with limited regularity of the outer function g (which might fail to be everywhere differentiable). Parallel to this, we investigate upper and lower bounds for nested expectations as above, in the spirit of primal-dual algorithms for stochastic control problems.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


Sign in / Sign up

Export Citation Format

Share Document