Avoiding Compressor Surge During Emergency Shutdown Hybrid Turbine Systems

Author(s):  
Paolo Pezzini ◽  
David Tucker ◽  
Alberto Traverso

A new emergency shutdown procedure for a direct-fired fuel cell turbine hybrid power system was evaluated using a hardware-based simulation of an integrated gasifier/fuel cell/turbine hybrid cycle (IGFC), implemented through the Hybrid Performance (Hyper) project at the National Energy Technology Laboratory, U.S. Department of Energy (NETL). The Hyper facility is designed to explore dynamic operation of hybrid systems and quantitatively characterize such transient behavior. It is possible to model, test, and evaluate the effects of different parameters on the design and operation of a gasifier/fuel cell/gas turbine hybrid system and provide a means of quantifying risk mitigation strategies. An open-loop system analysis regarding the dynamic effect of bleed air, cold air bypass, and load bank is presented in order to evaluate the combination of these three main actuators during emergency shutdown. In the previous Hybrid control system architecture, catastrophic compressor failures were observed when the fuel and load bank were cut off during emergency shutdown strategy. Improvements were achieved using a nonlinear fuel valve ramp down when the load bank was not operating. Experiments in load bank operation show compressor surge and stall after emergency shutdown activation. The difficulties in finding an optimal compressor and cathode mass flow for mitigation of surge and stall using these actuators are illustrated.

Author(s):  
Paolo Pezzini ◽  
David Tucker ◽  
Alberto Traverso

A new emergency shutdown procedure for a direct-fired fuel cell turbine hybrid power system was evaluated using a hardware-based simulation of an integrated gasifier/fuel cell/turbine hybrid cycle (IGFC), implemented through the Hybrid Performance (Hyper) project at the National Energy Technology Laboratory, U.S. Department of Energy (NETL). The Hyper facility is designed to explore dynamic operation of hybrid systems and quantitatively characterize such transient behavior. It is possible to model, test and evaluate the effects of different parameters on the design and operation of a gasifier/fuel cell/gas turbine hybrid system and provide means of quantifying risk mitigation strategies. An open-loop system analysis regarding the dynamic effect of bleed air, cold air by-pass and load bank is presented in order to evaluate the combination of these three main actuators during emergency shut-down. In the previous Hybrid control system architecture, catastrophic compressor failures were observed when the fuel and load bank were cut-off during emergency shut-down strategy. Improvements were achieved using a non-linear fuel valve ramp down when load bank was not operating. Experiments in load bank operation show compressor surge and stall after emergency shut-down activation. The difficulties in finding an optimal compressor and cathode mass flow for mitigation of surge and stall using these actuators are illustrated.


Author(s):  
Paolo Pezzini ◽  
Sue Celestin ◽  
David Tucker

A pressure drop analysis for a direct-fired fuel cell turbine hybrid power system was evaluated using a hardware-based simulation of an integrated gasifier/fuel cell/turbine hybrid cycle (IGFC), implemented through the Hybrid Performance (Hyper) project at the National Energy Technology Laboratory, U.S. Department of Energy (NETL). The Hyper facility is designed to explore dynamic operation of hybrid systems and quantitatively characterize such transient behavior. It is possible to model, test and evaluate the effects of different parameters on the design and operation of a gasifier/fuel cell/gas turbine hybrid system and provide means of evaluating risk mitigation strategies. The cold air bypass in the Hyper facility directs compressor discharge flow to the turbine inlet duct, bypassing the fuel cell and exhaust gas recuperators in the system. This valve reduces turbine inlet temperature while reducing cathode airflow, but significantly improves compressor surge margin. Regardless of the reduced turbine inlet temperature as the valve opens, a peak in turbine efficiency is observed during characterization of the valve at the middle of the operating range. A detailed experimental analysis shows the unusual behavior during steady state and transient operation, which is considered a key point for future control strategies in terms of turbine efficiency optimization and cathode airflow control.


Author(s):  
Paolo Pezzini ◽  
David Tucker ◽  
Alberto Traverso

A hardware-in-the-loop-simulation (HiLS) procedure for a direct-fired fuel cell turbine hybrid power system was evaluated for an integrated gasifier/fuel cell/turbine hybrid cycle (IGFC), implemented through the Hybrid Performance (Hyper) project at the National Energy Technology Laboratory, U.S. Department of Energy (NETL). The Hyper facility is designed to explore dynamic operation of hybrid systems and quantitatively characterize such transient behaviour. It is possible to model, test and evaluate the effects of different parameters on the design and operation of a gasifier/fuel cell/gas turbine hybrid system and quantify risk mitigation strategies. The previous implementation of emergency shut-down control strategies resulted in turbomachinery hardware failure. The primary linking event in these cases was compressor stall and surge resulting from the sudden loss of fuel during implementation of the standard double block and bleed strategy used during emergency failure. A new mitigation strategy involving automated ramps is proposed and described in detail to control the system from start-up to forced emergency shut-down. The control architecture shows how the virtual fuel cell model can be coupled to the real gas turbine safely, in all of stage of operations. The paper includes improvements to the emergency shutdown procedure, failure analyses, and the comparison of experimental data with previous results.


2019 ◽  
Vol 113 ◽  
pp. 02014
Author(s):  
Luca Mantelli ◽  
David Tucker ◽  
Mario Luigi Ferrari

A large volume between compressor and turbine is present in fuel cell gas turbine hybrid systems. The substantially larger compressor plenum volume modifies the dynamic behaviour of these systems, increasing the risk of compressor surge during transients and subsequent destruction of both turbomachinery and fuel cell components. Diverting part of the compressor inlet flow directly to the turbine inlet through a cold-air bypass valve, bypassing the fuel cell stack, has been proven to be an effective method to increase the surge margin during normal operation and also to recover the machine from fully developed surge. This study investigates the dynamic effect of different cold-air bypass valve opening/closing procedures, especially steps and ramps changing the valve fractional opening. This analysis was carried out with reference to the Hybrid Performance (Hyper) facility: a hybrid system emulated using hardware and a cyber-physical fuel cell system at the National Energy Technology Laboratory (NETL), U.S. Department of Energy (DOE). Simulations performed on a Matlab®-Simulink® dynamic model of the system based on Greitzer’s theory showed a different behaviour varying the valve fractional opening with steps or ramps. Many experimental tests were performed on the Hyper facility to confirm the trends obtained from the simulations results. From the outcomes of this study, it has been possible to determine how to maximize the surge recovery effect of the cold-air bypass valve opening and to minimize surge related risks during the valve closure.


Author(s):  
Paolo Pezzini ◽  
Sue Celestin ◽  
David Tucker

A pressure drop analysis for a direct-fired fuel cell turbine hybrid power system was evaluated using a hardware-based simulation of an integrated gasifier/fuel cell/turbine hybrid cycle, implemented through the hybrid performance (Hyper) project at the National Energy Technology Laboratory, U.S. Department of Energy (NETL). The Hyper facility is designed to explore dynamic operation of hybrid systems and quantitatively characterize such transient behavior. It is possible to model, test, and evaluate the effects of different parameters on the design and operation of a gasifier/fuel cell/gas turbine hybrid system and provide means of evaluating risk mitigation strategies. The cold-air bypass in the Hyper facility directs compressor discharge flow to the turbine inlet duct, bypassing the fuel cell, and exhaust gas recuperators in the system. This valve reduces turbine inlet temperature while reducing cathode airflow, but significantly improves compressor surge margin. Regardless of the reduced turbine inlet temperature as the valve opens, a peak in turbine efficiency is observed during characterization of the valve at the middle of the operating range. A detailed experimental analysis shows the unusual behavior during steady state and transient operation, which is considered a key point for future control strategies in terms of turbine efficiency optimization and cathode airflow control.


Author(s):  
Alberto Traverso ◽  
David Tucker ◽  
Comas L. Haynes

A newly developed integrated gasification fuel cell (IGFC) hybrid system concept has been tested using the Hybrid Performance (Hyper) project hardware-based simulation facility at the U.S. Department of Energy, National Energy Technology Laboratory. The cathode-loop hardware facility, previously connected to the real-time fuel cell model, was integrated with a real-time model of a gasifier of solid (biomass and fossil) fuel. The fuel cells are operated at the compressor delivery pressure, and they are fueled by an updraft atmospheric gasifier, through the syngas conditioning train for tar removal and syngas compression. The system was brought to steady state; then several perturbations in open loop (variable speed) and closed loop (constant speed) were performed in order to characterize the IGFC behavior. Coupled experiments and computations have shown the feasibility of relatively fast control of the plant as well as a possible mitigation strategy to reduce the thermal stress on the fuel cells as a consequence of load variation and change in gasifier operating conditions. Results also provided an insight into the different features of variable versus constant speed operation of the gas turbine section.


2015 ◽  
Vol 12 (1) ◽  
Author(s):  
Nana Zhou ◽  
Chen Yang ◽  
David Tucker

Thermal management in the fuel cell component of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid power system can be improved by effective management and control of the cathode airflow. The disturbances of the cathode airflow were accomplished by diverting air around the fuel cell system through the manipulation of a hot-air bypass valve in open loop experiments, using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). The dynamic responses of the fuel cell component and hardware component of the hybrid system were studied in this paper.


Author(s):  
Alberto Traverso ◽  
David Tucker ◽  
Comas L. Haynes

A newly developed Integrated Gasification Fuel Cell (IGFC) hybrid system concept has been tested using the Hybrid Performance (Hyper) project hardware-based simulation facility at the U.S. Department of Energy, National Energy Technology Laboratory. The cathode-loop hardware facility, previously connected to the real-time fuel cell model, was expanded by the inclusion of a real-time model of a gasifier of solid fuels, in this case biomass fuel. The fuel cell is operated at the compressor delivery pressure, and it is fuelled by an updraft atmospheric gasifier, through the syngas conditioning train for tar removal and syngas compression. The system was brought to steady-state; then, several perturbations in open loop (variable speed) and closed loop (constant speed) were performed in order to characterize the IGFC behavior. Experiments have shown the feasibility of relatively fast control of the plant as well as a possible mitigation strategy to reduce the thermal stress on the fuel cell as a consequence of load variation and change in gasifier operating conditions. Results also provided an insight into the different features of variable vs constant speed operation of the gas turbine section.


2006 ◽  
Vol 2 (S236) ◽  
pp. 353-362 ◽  
Author(s):  
Željko Ivezić ◽  
J. Anthony Tyson ◽  
Mario Jurić ◽  
Jeremy Kubica ◽  
Andrew Connolly ◽  
...  

AbstractThe Large Synoptic Survey Telescope (LSST) is currently by far the most ambitious proposed ground-based optical survey. With initial funding from the National Science Foundation (NSF), Department of Energy (DOE) laboratories, and private sponsors, the design and development efforts are well underway at many institutions, including top universities and national laboratories. Solar System mapping is one of the four key scientific design drivers, with emphasis on efficient Near-Earth Object (NEO) and Potentially Hazardous Asteroid (PHA) detection, orbit determination, and characterization. The LSST system will be sited at Cerro Pachon in northern Chile. In a continuous observing campaign of pairs of 15 s exposures of its 3,200 megapixel camera, LSST will cover the entire available sky every three nights in two photometric bands to a depth of V=25 per visit (two exposures), with exquisitely accurate astrometry and photometry. Over the proposed survey lifetime of 10 years, each sky location would be visited about 1000 times, with the total exposure time of 8 hours distributed over several broad photometric bandpasses. The baseline design satisfies strong constraints on the cadence of observations mandated by PHAs such as closely spaced pairs of observations to link different detections and short exposures to avoid trailing losses. Due to frequent repeat visits LSST will effectively provide its own follow-up to derive orbits for detected moving objects.Detailed modeling of LSST operations, incorporating real historical weather and seeing data from Cerro Pachon, shows that LSST using its baseline design cadence could find 90% of the PHAs with diameters larger than 250 m, and 75% of those greater than 140 m within ten years. However, by optimizing sky coverage, the ongoing simulations suggest that the LSST system, with its first light in 2013, can reach the Congressional mandate of cataloging 90% of PHAs larger than 140m by 2020. In addition to detecting, tracking, and determining orbits for these PHAs, LSST will also provide valuable data on their physical and chemical characteristics (accurate color and variability measurements), constraining PHA properties relevant for risk mitigation strategies. In order to fulfill the Congressional mandate, a survey with an etendue of at least several hundred m2deg2, and a sophisticated and robust data processing system is required. It is fortunate that the same hardware, software and cadence requirements are driven by science unrelated to NEOs: LSST reaches the threshold where different science drivers and different agencies (NSF, DOE and NASA) can work together to efficiently achieve seemingly disjoint, but deeply connected, goals.


Sign in / Sign up

Export Citation Format

Share Document