bypass valve
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 17)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Mingyang Yang ◽  
Lei Pan ◽  
Mengying Shu ◽  
Kangyao Deng ◽  
Zhanming Ding ◽  
...  

Two-stage turbocharging becomes prevailing in internal combustion engines due to its advantage of flexibility of boosting for the variation of operational conditions. Two turbochargers are closely coupled by engine manifolds in the system especially under the requirement of compactness. This paper studies the influence of the interaction of two turbines in a two-stage turbocharging system on the performance. Results show that the performance of low-pressure turbine is highly sensitive to the stage interaction. Specifically, compared with the cases without interaction, the efficiency of low-pressure turbine increases maximumly by 2.8% when the bypass valve is closed, but reduces drastically by 7.5% when the valve is open. Detailed flow analysis shows that the combined results of swirling flow from the high-pressure turbine and the Dean vortex caused by the manifold elbow result in the alleviation of entropy generation in the turbine rotor. However, when the bypass valve is open, interaction of the swirling flow with the injected bypass flow results in strong secondary flow in the volute and distorted inlet flow condition for the rotor, leading to the enhancement of entropy generation in low-pressure turbine. The study provides valuable insights into turbine performance in a two-stage turbocharging system, which can be used for the modeling and optimization of multi-stage turbocharging systems.


2021 ◽  
Vol 1985 (1) ◽  
pp. 012027
Author(s):  
Junfeng Liu ◽  
Xudong Chen ◽  
Chuangao Han ◽  
Xiaolong Ma ◽  
Fangjie Wu

2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 2923-2931
Author(s):  
Wenfeng Bai ◽  
Caofeng He

Vehicle fuel cell systems release a large amount of heat while generating electricity. The suitable thermal management system must be built to ensure system performance and reliability. Based on the analysis of the working principle of the vehicle fuel cell thermal management system, the paper establishes a control-oriented fuel cell thermal management. The stack, air cooler, hydrogen heat exchanger, bypass valve, heat sink, and cooling water circulating pump model are taking into account. System model, and the relationship between stack current, coolant flow rate, fin surface wind speed, bypass valve opening, and fuel cell temperature are in established in simulation experiments. The paper discusses their effects on system as a whole, air coolers, hydrogen heat exchangers, and the influence of the temperature difference between the inlet and outlet of the radiator. The simulation results can provide guidance and help to design the fuel cell thermal management control system.


Author(s):  
Shima Nazari ◽  
Jason Siegel ◽  
Robert Middleton ◽  
Anna Stefanopoulou

This work studies a novel low voltage (<60 V) hybrid system that supports engine boosting and downsizing in addition to start-stop, regenerative braking, and constrained torque assist/regeneration. The hybrid power split supercharger (PSS) shares a 9 kW motor between supercharging the engine or providing hybrid functionalities through a planetary gear set, a brake and a bypass valve. The PSS operation is limited to only one of the parallel hybrid or boosting modes at a time, necessitating a highly optimized decision making algorithm to select the device mode and power split ratio. In this work an adaptive equivalent consumption minimization strategy (A-ECMS) is developed for energy management of the PSS. The A-ECMS effectiveness is compared against a dynamic programming (DP) solution with full drive cycle preview through hardware-in-the-loop experiments on an engine dynamometer testbed. The experiments show that the PSS with A-ECMS reduces a vehicle fuel consumption by 18.4% over standard FTP75 cycle compared to a baseline turbocharged engine, while global optimal DP solution decreases the fuel consumption by 22.8% compared to baseline.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1370
Author(s):  
Khayyam Masood ◽  
Xavier Dauptain ◽  
Matteo Zoppi ◽  
Rezia Molfino

The current paper presents an upgrade of a pre-installed hydraulic system for the operation of a pallet handling robot for a freight delivery vehicle known as FURBOT (freight urban robotic vehicle). The automated forklift installed on FURBOT for loading/unloading of cargo is powered with the help of hydraulics. The previous hydraulic system worked via a classical approach with a fixed displacement pump and a bypass valve, making it work on full power when in use. An alternative design was proposed, simulated and installed on FURBOT; it uses a fixed displacement pump and changes the rotation speed in real time using a pressure sensor. Novelty was attained with the use of gear pumps for said scenario. A control algorithm is implemented in the processing unit for controlling the speed of the motor driving the pump. The main advantage of this approach is better use of energy for the vehicle’s battery. The aim of this research is to control both the speed and maximum force exerted by the actuators with the help of a single sensor and an inexpensive pump.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Binglong Zhang ◽  
He Liu ◽  
Jianhua Zhou ◽  
Hui Liu

AbstractThe forward variable area bypass injector (FVABI) is a key component of double bypass variable cycle engine (VCE) to achieve mode transition and bypass ratio adjustment. In this paper, an experimental system for FVABI was constructed based on the analysis of relevant experimental theories, and then the experiments on FVABI were carried out for a specific working state in double bypass mode of VCE and for the comparison working states with different area ratios and different back pressure ratios. The results showed that the FVABI designed in this paper meets the requirements of VCE at this working state. The analysis of the influence of area ratio and back pressure ratio on the injection coefficient showed that the first bypass valve and back pressure were effective means to control the mass flow of FVABI.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Binglong Zhang ◽  
He Liu ◽  
Jianhua Zhou ◽  
Hui Liu

Abstract The forward variable area bypass injector (FVABI) is a key component of double bypass variable cycle engine (VCE) to achieve mode transition and bypass ratio adjustment. In this paper, an experimental system for FVABI was constructed based on the analysis of relevant experimental theories, and then the experiments on FVABI were carried out for a specific working state in double bypass mode of VCE and for the comparison working states with different area ratios and different back pressure ratios. The results showed that the FVABI designed in this paper meets the requirements of VCE at this working state. The analysis of the influence of area ratio and back pressure ratio on the injection coefficient showed that the first bypass valve and back pressure were effective means to control the mass flow of FVABI.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Liang Zhang ◽  
Jiawei Zhou ◽  
Honggang He

The pipeline inspection gauge (PIG, lowercase pig is commonly used) with a bypass valve is widely used in pipeline inspection because it operates at a low speed without reducing the flow rate. Understanding the dynamics of a bypass pig in a gas pipeline would contribute to the design of the pig and the control of pig speed. This paper deals with the dynamic model for the process of a bypass pig travelling through a hilly gas pipeline. The method of characteristics (MOC) is used to solve the equations of unsteady gas flow. The backward flow of the gas in the bypass valve and pipe is shown by a simulation of pigging for a hilly gas pipeline. Parametric sensitivity analysis of pigging in the horizontal gas pipe using a bypass pig is then carried out. The results indicate that the speed of a bypass pig is most sensitive to the gas speed in the pipe followed by the bypass area and the friction of the pig. A formula, obtained from the results of the simulations using response surface methodology (RSM), is presented to predict the steady speed of a bypass pig in the horizontal gas pipeline.


2020 ◽  
pp. 347-352
Author(s):  
A. Haidara ◽  
Diallo O. ◽  
A. Tokpa ◽  
H.A. Nda ◽  
K.S. Yao

Bringing a pregnancy to term is possible for a woman carrying a ventriculoperitoneal bypass valve, however, pregnancy can be a source of malfunction of the bypass system. We report two cases of malfunction of a VPS during the pregnancy's 3rd trimester in two patients aged 25 and 30 years respectively. The valve was examined in both cases and the persistence of the neurological signs required a cesarean section. The diagnostic aspects and management strategies were discussed as regards these two cases and throughout the literature review.


Sign in / Sign up

Export Citation Format

Share Document