A Green's Function-Based Design for Deformation Control of a Microbeam With In-Domain Actuation

Author(s):  
Amir Badkoubeh ◽  
Guchuan Zhu

This paper presents a Green's function-based design for deformation control of a microbeam described by an Euler-Bernoulli equation with in-domain pointwise actuation. The Green's function is first used in control design to construct the test function that enables the solvability of a map between the original nonhomogeneous partial differential equation and a target system in standard boundary control form. Then a regularized Green's function is employed in motion planning, leading to a computationally tractable implementation of the control scheme combined by a single feedback stabilizing loop and feedforward controls. The viability and the applicability of the proposed approach are demonstrated through numerical simulations of a representative microbeam.

Author(s):  
Mohammed Z. Afsar ◽  
Adrian Sescu ◽  
Stewart J. Leib

This paper uses asymptotic analysis within the generalized acoustic analogy formulation (Goldstein 2003 JFM 488 , 315–333. ( doi:10.1017/S0022112003004890 )) to develop a noise prediction model for the peak sound of axisymmetric round jets at subsonic acoustic Mach numbers (Ma). The analogy shows that the exact formula for the acoustic pressure is given by a convolution product of a propagator tensor (determined by the vector Green's function of the adjoint linearized Euler equations for a given jet mean flow) and a generalized source term representing the jet turbulence field. Using a low-frequency/small spread rate asymptotic expansion of the propagator, mean flow non-parallelism enters the lowest order Green's function solution via the streamwise component of the mean flow advection vector in a hyperbolic partial differential equation. We then address the predictive capability of the solution to this partial differential equation when used in the analogy through first-of-its-kind numerical calculations when an experimentally verified model of the turbulence source structure is used together with Reynolds-averaged Navier–Stokes solutions for the jet mean flow. Our noise predictions show a reasonable level of accuracy in the peak noise direction at Ma = 0.9, for Strouhal numbers up to about 0.6, and at Ma = 0.5 using modified source coefficients. Possible reasons for this are discussed. Moreover, the prediction range can be extended beyond unity Strouhal number by using an approximate composite asymptotic formula for the vector Green's function that reduces to the locally parallel flow limit at high frequencies. This article is part of the theme issue ‘Frontiers of aeroacoustics research: theory, computation and experiment’.


1949 ◽  
Vol 1 (2) ◽  
pp. 191-198 ◽  
Author(s):  
E. C. Titchmarsh

The Green's function G(x, ξ, λ) associated with the differential equation is of importance in the theory of the expansion of an arbitrary function in terms of the solutions of the differential equation. It is proved that this function is unique if q(x) ≧ — Ax2— B, where A and B are positive constants or zero. A similar theorem is proved for the Green's function G(x, y, ξ, η, λ) associated with the partial differential equation


2007 ◽  
Vol 21 (02n03) ◽  
pp. 139-154 ◽  
Author(s):  
J. H. ASAD

A first-order differential equation of Green's function, at the origin G(0), for the one-dimensional lattice is derived by simple recurrence relation. Green's function at site (m) is then calculated in terms of G(0). A simple recurrence relation connecting the lattice Green's function at the site (m, n) and the first derivative of the lattice Green's function at the site (m ± 1, n) is presented for the two-dimensional lattice, a differential equation of second order in G(0, 0) is obtained. By making use of the latter recurrence relation, lattice Green's function at an arbitrary site is obtained in closed form. Finally, the phase shift and scattering cross-section are evaluated analytically and numerically for one- and two-impurities.


1960 ◽  
Vol 50 (3) ◽  
pp. 461-465
Author(s):  
R. E. Ingram

ABSTRACT In investigating the response of an electromagnetic seismograph to various ground movements it is advantageous to have the solution of the differential equation as an integral. This is done by finding the Green's function, f(s), for the particular instrument. The angular movement of the galvanometer is then θ(t)=q∫0tf(s)x″(t−s)ds where x(t) is the ground movement and prime stands for the operator d/dt. It is sufficient to find one function, F(s), with dF/ds = f(s), to give the response to a displacement test, a tapping test, or a ground movement.


1975 ◽  
Vol 17 (3) ◽  
pp. 259-262
Author(s):  
I. N. Inozemtseva ◽  
Yu. V. Komlenko ◽  
S. A. Pak

2021 ◽  
Vol 6 (11) ◽  
pp. 12583-12598
Author(s):  
Limin Guo ◽  
◽  
Lishan Liu ◽  
Ying Wang ◽  
◽  
...  

<abstract><p>In this paper, the maximal and minimal iterative positive solutions are investigated for a singular Hadamard fractional differential equation boundary value problem with a boundary condition involving values at infinite number of points. Green's function is deduced and some properties of Green's function are given. Based upon these properties, iterative schemes are established for approximating the maximal and minimal positive solutions.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document