scholarly journals Experimental Investigation of Flow Condensation in Microgravity

2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Hyoungsoon Lee ◽  
Ilchung Park ◽  
Christopher Konishi ◽  
Issam Mudawar ◽  
Rochelle I. May ◽  
...  

Future manned space missions are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to predict the average condensation heat transfer coefficient with varying degrees of success, and a recent correlation is identified for its superior predictive capability, evidenced by a mean absolute error of 21.7%.

Author(s):  
Hyoungsoon Lee ◽  
Ilchung Park ◽  
Christopher Konishi ◽  
Issam Mudawar ◽  
Rochelle I. May ◽  
...  

Future manned missions to Mars are expected to greatly increase the space vehicle’s size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to predict the average condensation heat transfer coefficient with varying degrees of success, and a recent correlation is identified for its superior predictive capability, evidenced by a mean absolute error of 21.7%.


Author(s):  
Tannaz Harirchian ◽  
Suresh V. Garimella

Two-phase heat transfer in microchannels can support very high heat fluxes for use in high-performance electronics-cooling applications. However, the effects of microchannel cross-sectional dimensions on the heat transfer coefficient and pressure drop have not been investigated extensively. In the present work, experiments are conducted to investigate the local flow boiling heat transfer in microchannel heat sinks. The effect of channel size on the heat transfer coefficient and pressure drop is studied for mass fluxes ranging from 250 to 1600 kg/m2s. The test sections consist of parallel microchannels with nominal widths of 100, 250, 400, 700, and 1000 μm, all with a depth of 400 μm, cut into 12.7 mm × 12.7 mm silicon substrates. Twenty-five microheaters embedded in the substrate allow local control of the imposed heat flux, while twenty-five temperature microsensors integrated into the back of the substrates enable local measurements of temperature. The dielectric fluid Fluorinert FC-77 is used as the working fluid. The results of this study serve to quantify the effectiveness of microchannel heat transport while simultaneously assessing the pressure drop trade-offs.


Author(s):  
Ronald Akbar ◽  
Jong Taek Oh ◽  
Agus Sunjarianto Pamitran

Various experiments have been conducted on the heat transfer coefficient of two-phase flow boiling in mini channel tubes. In addition to obtaining data on the heat transfer coefficients through experiments, many researchers have also compared their experimental data using existing correlations. This research aims to determine the characteristics of the heat transfer coefficient of refrigerant R290 from the data used by processing and knowing the best heat transfer coefficient correlation in predicting the experimental data so that the results are expected to be a reference for designing a heat exchanger or for further research. The experimental data predicted is the two-phase flow boiling in a horizontal tube 3 mm diameter, with the mass flux of 50-180 kg/m2s, heat flux of 5-20 kW/m2, saturation temperature of 0-11 °C, and vapor quality of 0-1. The correlation used in this research is based on the asymptotic flow model, where the model is a combination of the nucleate and convective flow boiling mechanisms. The results show an effect of mass flux and heat flux on the experimental heat transfer coefficient and the predicted R290 heat transfer coefficient with asymptotic correlations had a good and similar result to the experimental data.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3540
Author(s):  
Peng Yang ◽  
Ting Zhang ◽  
Yuheng Zhang ◽  
Sophie Wang ◽  
Yingwen Liu

The present study proposes a model to predict the heat transfer coefficient in R134a liquid–vapor two-phase pulsating flow boiling in an evaporator using the experimental data and response surface methodology (RSM). The model is based on the current existing empirical correlation for R134a liquid–vapor two-phase continuous flow with an imposed modification factor. The model for the imposed modification factor is the function of the pulsating period and inlet/outlet vapor quality, which is obtained using the limited experimental data. An analysis of variance (ANOVA) is carried out to test the significance of the model and normal probability of residuals is analyzed as well. Results show that the regression model produces a mean error of −4.3% and a standard deviation of 15.4%, compared to experimental results. Of the data 95.1% is contained inside a ±50% error window, which indicates that the proposed model could predict the heat transfer coefficient of R134a liquid–vapor two-phase pulsating flow boiling well.


Author(s):  
Francesc Madrid ◽  
Nadia Caney ◽  
Philippe Marty

Mini-channel heat exchangers improve thermal performance in comparison to conventional macro-channel heat exchangers, being highly efficient, compact and requiring low fluid mass. However, classical correlations for two-phase flow in macro-channels fail in predicting the heat transfer coefficient in mini-channels. Therefore, new studies are needed in order to provide better knowledge on flow boiling phenomena in confined spaces. The proposed paper presents an experimental study on two-phase vertical flow boiling in mini-channels. The aim of this work is to determine the heat transfer coefficient and to study the pressure drop in a mini-channel heat exchanger (hydraulic diameter of 840μm) in order to obtain better understanding of the flow boiling mechanisms. A vertical upward flow test section is connected to a primary HFE-7100 circuit. A preheater imposes a given sub-cooled fluid temperature or a given two-phase vapour quality at the inlet. Downstream in the test loop, the fluid is condensed and pumped again into the test section. The pressure drop and the heat transfer coefficient in the test section have been measured for a variety of conditions. Different heat flux, inlet vapour quality and mass flow rate values have been tested. For the heat transfer coefficient, a correlating model is proposed as a function of the superficial velocity. This parameter appears to be much more appropriate than the vapour quality or the mass flow rate for dry-out occurrence prediction. A single critical velocity value has been found.


2018 ◽  
Vol 70 ◽  
pp. 02014 ◽  
Author(s):  
Kinga Strąk ◽  
Magdalena Piasecka

The paper reports results for flow boiling heat transfer in a 1.7 mm deep minichannel vertically-oriented with upward and downward flow. The heated element for HFE-649 flowing upward or downward in a channel was a smooth plate. Infrared thermography allowed determining changes in temperature on the outer plate side. Two-phase flow structures were recorded through a glass pane at the other side of the channel being in contact with the fluid. Analysis of the results was performed on the basis of experimental series obtained for the same heat flux for upward and downward flows and two mass flow velocities. The results are presented as relationships between the heat transfer coefficient or the plate temperature and the channel length, boiling curves, and between the heat flux and the heat transfer coefficient and two-phase flow structure images. The impact of mass flow velocity on the heat transfer coefficient and two-phase flow structures for vertical upward and downward flows were discussed.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
C. Falsetti ◽  
M. Magnini ◽  
J. R. Thome

The development of newer and more efficient cooling techniques to sustain the increasing power density of high-performance computing systems is becoming one of the major challenges in the development of microelectronics. In this framework, two-phase cooling is a promising solution for dissipating the greater amount of generated heat. In the present study, an experimental investigation of two-phase flow boiling in a micro-pin fin evaporator is performed. The micro-evaporator has a heated area of 1 cm2 containing 66 rows of cylindrical in-line micro-pin fins with diameter, height, and pitch of, respectively, 50 μm, 100 μm, and 91.7 μm. The working fluid is R1234ze(E) tested over a wide range of conditions: mass fluxes varying from 750 kg/m2 s to 1750 kg/m2 s and heat fluxes ranging from 20 W/cm2 to 44 W/cm2. The effects of saturation temperature on the heat transfer are investigated by testing three different outlet saturation temperatures: 25 °C, 30 °C, and 35 °C. In order to assess the thermal–hydraulic performance of the current heat sink, the total pressure drops are directly measured, while local values of heat transfer coefficient are evaluated by coupling high-speed flow visualization with infrared temperature measurements. According to the experimental results, the mass flux has the most significant impact on the heat transfer coefficient while heat flux is a less influential parameter. The vapor quality varies in a range between 0 and 0.45. The heat transfer coefficient in the subcooled region reaches a maximum value of about 12 kW/m2 K, whilst in two-phase flow it goes up to 30 kW/m2 K.


Author(s):  
Brandon Hulet ◽  
Andres Martinez ◽  
Melanie Derby ◽  
Amy Rachel Betz

This research experimentally investigates the heat transfer performance of open-micro channels under filmwise condensation conditions. Filmwise condensation is an important factor in the design of steam condensers used in thermoelectric power generation, desalination, and other industrial applications. Filmwise condensation averages five times lower heat transfer coefficients than those present in dropwise condensation, and filmwise condensation is the dominant condensation regime in the steam condensers due to a lack of a durable dropwise condensation surface. Film thickness is also of concern because it is directly proportional to the condenser’s overall thermal resistance. This research focuses on optimizing the channel size to inhibit the creation of a water film and/or to reduce its overall thickness in order to maximize the heat transfer coefficient of the surface. Condensation heat transfer was measured in three square channels and a plane surface as a control. The sizes of the square fins were 0.25 mm; 0.5 mm; and 1 mm, and tests were done at a constant pressure of 6.2 kPa. At lower heat fluxes, the 0.25mm fins perform better, whereas at larger heat fluxes a smooth surface offers better performance. At lower heat fluxes, droplets are swept away by gravity before the channels are flooded. Whereas, at higher heat fluxes, the channels are flooded increasing the total film thickness, thereby reducing the heat transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document