Convective Condensation Inside Horizontal Smooth and Microfin Tubes

2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Zan Wu ◽  
Bengt Sundén ◽  
Lei Wang ◽  
Wei Li

An experimental investigation was performed for convective condensation of R410A inside one smooth tube (3.78 mm, inner diameter) and six microfin tubes (4.54, 4.6 and 8.98 mm, fin root diameter) of different geometries for mass fluxes ranging from 99 to 603 kg m−2s−1. The experimental data were analyzed with updated flow pattern maps and evaluated with existing correlations. The heat transfer coefficient in the microfin tubes decreases at first and then increases or flattens out gradually as mass flux decreases. This obvious nonmonotonic heat transfer coefficient-mass flux relation may be explained by the complex interactions between the microfins and the fluid, mainly by surface tension effects. The heat transfer enhancement mechanism in microfin tubes is mainly due to the surface area increase at large mass fluxes, while liquid drainage by surface tension and interfacial turbulence enhance heat transfer greatly at low mass fluxes.

2003 ◽  
Vol 125 (1) ◽  
pp. 70-74 ◽  
Author(s):  
N. Sozbir ◽  
Y. W. Chang ◽  
S. C. Yao

Experimental studies were conducted to reveal the heat transfer mechanism of impacting water mist on high temperature metal surfaces. Local heat transfer coefficients were measured in the film-boiling regime at various air velocities and liquid mass fluxes. The test conditions of water mist cover the variations of air velocity from 0 to 50.3 m/s, liquid mass flux from 0 to 7.67 kg/m2s, and surface temperature of stainless steel between 525°C and 500°C. Radial heat transfer distributions were measured at different liquid mass fluxes. The tests revealed that the radial variation of heat transfer coefficients of water mist has a similar trend to the air jet cooling. At the stagnation point, heat transfer coefficient increases with both the air velocity and the liquid mass flux. The convective air heat transfer is consistent with the published correlation in the literature. The heat transfer contribution due to the presence of water increases almost linearly with the liquid mass flux. The total heat transfer coefficient can be established as two separable effects, which is the summation of the heat transfer coefficient of air and of liquid mass flux, respectively. This study shows that with a small amount of water added in the impacting air jet, the heat transfer is dramatically increased. The Leidenfrost temperature under water mist cooling was also measured. The Leidenfrost temperature increased with both the air velocity and the liquid mass flux.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
G. D. Qiu ◽  
W. H. Cai ◽  
Z. Y. Wu ◽  
Y. Yao ◽  
Y. Q. Jiang

A numerical simulation of forced convective condensation of propane in an upright spiral tube is presented. In the numerical simulations, the important models are used: implicit volume of fluid (VOF) multiphase model, Reynolds stress (RS) turbulence model, Lee's phase change model and Ishii's concentration model, and also the gravity and surface tension are taken into account. The mass flux and vapor quality are simulated from 150 to 350 kg·m−2·s−1 and from 0.1 to 0.9, respectively. The numerical results show that in all simulation cases, only the stratified flow, annular flow, and mist flow are observed. The heat transfer coefficient and frictional pressure drop increase with the increase of mass flux and vapor quality for all simulation cases. Under different flow patterns and mass flux, the numerical results of void fraction, heat transfer coefficient, and frictional pressure drop show good agreement with the experimental results and correlations from the existing references.


2021 ◽  
Vol 9 ◽  
Author(s):  
Na Liu ◽  
Qian Zhao ◽  
Zhixiang Lan

Despite of the large number of research dedicated to condensation heat transfer and pressure drop characteristics in pristine micro-fin tubes, experimental investigation on effects of tube expansion have not been reported in the open literature. The paper reports measured cross-sectional dimensions, condensation heat transfer and pressure drop data of R1234ze(E) in pristine (5.10 mm OD) and expanded (5.26 mm OD) micro-fin tubes with mass fluxes from 100 to 300 kg/(m2·s). Effects of mass flux, vapor quality and tube expansion on the heat transfer coefficients and friction pressure gradients were investigated in the study. When the mass flux is 100 kg/(m2·s), the heat transfer coefficient and pressure drop of R1234ze(E) decrease after tube expansion. However, when the mass fluxes are 200 and 300 kg/(m2·s), tube expansion effects on the heat transfer coefficient and pressure drop are not notable. In addition, the experimental results are analyzed based on the existing condensation heat transfer and pressure drop correlations.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Santosh Krishnamurthy ◽  
Yoav Peles

Flow boiling of 1-methoxyheptafluoropropane (HFE 7000) in 222 μm hydraulic diameter channels containing a single row of 24 inline 100 μm pin fins was studied for mass fluxes from 350 kg/m2 s to 827 kg/m2 s and wall heat fluxes from 10 W/cm2 to 110 W/cm2. Flow visualization revealed the existence of isolated bubbles, bubbles interacting, multiple flow, and annular flow. The observed flow patterns were mapped as a function of the boiling number and the normalized axial distance. The local heat transfer coefficient during subcooled boiling was measured and found to be considerably higher than the corresponding single-phase flow. Furthermore, a thermal performance evaluation comparison with a plain microchannel revealed that the presence of pin fins considerably enhanced the heat transfer coefficient.


Author(s):  
Bradley T. Holcomb ◽  
Tannaz Harirchian ◽  
Suresh V. Garimella

The heat transfer characteristics during flow boiling of deionized water in parallel microchannels are investigated. The silicon heat sinks contain an array of integrated heaters and diodes for localized heat-flux control and temperature measurement. The channel widths for the three different test pieces range from 250 μm to 2200 μm, with a nominal depth for all channels of 400 μm. The present study investigates the effects of the channel width and mass flux on the boiling performance. This study follows a previous study using a wetting dielectric liquid, and aims to understand the role of wetting since water is relatively non-wetting. From the results of the present study, a weak dependence of the boiling curve and heat transfer coefficient on mass flux was observed. Varying the channel width also does not have a strong effect on either the boiling curve or the heat transfer coefficient. The experimental results are compared to those obtained previously for a dielectric liquid. They are also compared with predictions from several correlations from the literature.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Weiyu Tang ◽  
Wei Li

Abstract An experimental investigation into heat transfer characteristics during condensation on two horizontal enhanced tubes (EHTs) was conducted. All the tested EHTs s have similar geometries with an outer diameter of 12.7 mm, and a plain tube was also tested for comparison. Investigated enhanced surfaces consist of dimples, protrusions, and grooves, which may produce more flow turbulence and enhanced the liquid drainage effect. The effects of mass fluxes and vapor quality were compared and analyzed. Test conditions were as follows: saturation temperature fixed at 45 °C, mass flux varying from 100 to 200 kg m−2 s−1, and vapor quality ranging from 0.3 to 0.8. The heat transfer coefficient was presented, and the results show that the proposed enhanced surfaces seem to have worse performance than the conventional tubes when the mass flux is less than 150 kg m−2 s−1, while one of the enhanced tubes (2EHT-1) produce an enhanced ratio of 1.03–1.14 when G = 200 kg m−2 s−1. Besides, it was found that the heat transfer coefficient increases with increasing vapor quality, which can be attributed to the increasing diffusion resistance. Mass flux seems to have little effect on the heat transfer performance of smooth tubes, while that of 1EHT increases obviously with increasing mass flux, especially for high vapor qualities.


Author(s):  
Desong Yang ◽  
Zhichuan Sun ◽  
Wei Li

Abstract An experimental investigation of shell-side flow condensation heat transfer was performed on advanced three-dimensional surface-enhanced tubes, including a herringbone micro-fin tube and a newly-developed 1-EHT tube. An equivalent plain tube was also tested for performance comparison. All of the test tubes have similar geometry parameters (inner diameter 11.43mm, outer diameter 12.7mm). Tests were conducted using R410A as the working fluid at a condensation saturation temperature of 45 °C, covering the mass flux range of 10–55 kg/(m2·s) with an inlet quality of 0.8 and an outlet quality of 0.1. Experimental results showed that the plain tube exhibits a better condensation heat transfer performance when compared to the enhanced tubes. Moreover, the mass flux has a significant influence on the heat transfer coefficient for shell-side condensation: the condensation heat transfer coefficient of plain tube decreases when the refrigerant mass flux becomes larger, while the heat transfer coefficient of herringbone tube shows a non-monotonic trend and the heat transfer coefficient of the 1-EHT tube gets higher with increasing refrigerant mass flux. Besides, A new prediction model based on the Cavallini’s equation was developed to predict the condensing coefficient of the three test tubes, and the mean absolute error of the improved equations is less than 4%.


Sign in / Sign up

Export Citation Format

Share Document