Numerical Solutions of Nano/Microphenomena Coupled With Macroscopic Process of Heat Transfer and Fluid Flow: A Brief Review

2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Ya-Ling He ◽  
Wen-Quan Tao

In this paper, numerical simulation approaches for multiscale process of heat transfer and fluid flow are briefly reviewed, and the existing coupling algorithms are summarized. These molecular dynamics simulation (MDS)–finite volume method (FVM), MD–lattice Boltzmann method (LBM), and direct simulation of Monte Carlo method (DSMC)–FVM. The available reconstruction operators for LBM–FVM coupling are introduced. Four multiscale examples for fluid flow and heat transfer are presented by using these coupled methods. It is shown that by coupled method different resolution requirements in the computational domain can be satisfied successfully while computational time can be significantly saved. Further research needs for the study of multiscale heat transfer and fluid flow problems are proposed.




2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.



2012 ◽  
Vol 395 ◽  
pp. 012002 ◽  
Author(s):  
A Carmona ◽  
C D Pérez-Segarra ◽  
O Lehmkuhl ◽  
A Oliva


1995 ◽  
Vol 117 (4) ◽  
pp. 683-690 ◽  
Author(s):  
Peter E. Raad ◽  
Shea Chen ◽  
David B. Johnson

A new method of calculating the pressure field in the simulation of two-dimensional, unsteady, incompressible, free surface fluid flow by use of a marker and cell method is presented. A critical feature of the new method is the introduction of a finer mesh of cells in addition to the regular mesh of finite volume cells. The smaller (micro) cells are used only near the free surface, while the regular (macro) cells are used throughout the computational domain. The movement of the free surface is accomplished by the use of massless surface markers, while the discrete representation of the free surface for the purpose of the application of pressure boundary conditions is accomplished by the use of micro cells. In order to exploit the advantages offered by micro cells, a new general equation governing the pressure field is derived. Micro cells also enable the identification and treatment of multiple points on the free surface in a single surface macro cell as well as of points on the free surface that are located in a macro cell that has no empty neighbors. Both of these situations are likely to occur repeatedly in a free surface fluid flow simulation, but neither situation has been explicitly taken into account in previous marker and cell methods. Numerical simulation results obtained both with and without the use of micro cells are compared with each other and with theoretical solutions to demonstrate the capabilities and validity of the new method.



2001 ◽  
Vol 124 (1) ◽  
pp. 11-21 ◽  
Author(s):  
J. Cadafalch ◽  
C. D. Pe´rez-Segarra ◽  
R. Co`nsul ◽  
A. Oliva

This work presents a post-processing tool for the verification of steady-state fluid flow and heat transfer finite volume computations. It is based both on the generalized Richardson extrapolation and the Grid Convergence Index GCI. The observed order of accuracy and a error band where the grid independent solution is expected to be contained are estimated. The results corresponding to the following two and three-dimensional steady-state simulations are post-processed: a flow inside a cavity with moving top wall, an axisymmetric turbulent flow through a compressor valve, a premixed methane/air laminar flat flame on a perforated burner, and the heat transfer from an isothermal cylinder enclosed by a square duct. Discussion is carried out about the certainty of the estimators obtained with the post-processing procedure. They have been shown to be useful parameters in order to assess credibility and quality to the reported numerical solutions.



Sign in / Sign up

Export Citation Format

Share Document