Assessment of Offshore Wind Energy Projects in Denmark. A Comparative Study With Onshore Projects Based on Regulatory Real Options

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
José Balibrea Iniesta ◽  
Manuel Monjas Barroso

There is a gap in the literature on the assessment of renewable energy projects regarding the role of regulatory real options (RROs) that do not depend entirely on the project promoter and yet affect the value of the project. This paper provides a methodology for evaluating investments in offshore wind generation in Denmark, based on the use of this type of options. The main results show that these RROs held by the administration, decrease the value of these renewable generation projects in Denmark. This confirms previous research for onshore generation in the same country.

Author(s):  
Dilara Gulcin Caglayan ◽  
Severin Ryberg ◽  
Heidi Heinrichs ◽  
Jochen Linßen ◽  
Detlef Stolten ◽  
...  

Renewable energy sources will play a central role in the sustainable energy systems of the future. Scenario analyses of such hypothesized energy systems require sound knowledge of the techno-economic potential of renewable energy technologies. Although there have been various studies concerning the potential of offshore wind energy, higher spatial resolution, as well as the future design concepts of offshore wind turbines, has not yet been addressed in sufficient detail. Here, we aim to overcome this gap by applying a high spatial resolution to the three main aspects of offshore wind potential analysis, namely ocean suitability, the simulation of wind turbines and cost estimation. A set of constraints is determined that reveal the available areas for turbine placement across Europe’s maritime boundaries. Then, turbine designs specific to each location are selected by identifying turbines with the cheapest levelized cost of electricity (LCOE), restricted to capacities, hub heights and rotor diameters of between 3-20 MW, 80-200 m and 80-280 m, respectively. Ocean eligibility and turbine design are then combined to distribute turbines across the available areas. Finally, LCOE trends are calculated from the individual turbine costs, as well as the corresponding capacity factor obtained by hourly simulation with wind speeds from 1980 to 2017. The results of cost-optimal turbine design reveal that the overall potential for offshore wind energy across Europe will constitute nearly 8.6 TW and 40.0 PWh at roughly 7 €ct kWh-1 average LCOE by 2050. Averaged design parameters at national level are provided in an appendix.


2020 ◽  
Vol 10 (18) ◽  
pp. 6398
Author(s):  
Meysam Majidi Nezhad ◽  
Riyaaz Uddien Shaik ◽  
Azim Heydari ◽  
Armin Razmjoo ◽  
Niyazi Arslan ◽  
...  

The elaboration of a methodology for accurately assessing the potentialities of blue renewable energy sources is a key challenge among the current energy sustainability strategies all over the world. Consequentially, many researchers are currently working to improve the accuracy of marine renewable assessment methods. Nowadays, remote sensing (RSs) satellites are used to observe the environment in many fields and applications. These could also be used to identify regions of interest for future energy converter installations and to accurately identify areas with interesting potentials. Therefore, researchers can dramatically reduce the possibility of significant error. In this paper, a comprehensive SWOT (strengths, weaknesses, opportunities and threats) analysis is elaborated to assess RS satellite potentialities for offshore wind (OW) estimation. Sicily and Sardinia—the two biggest Italian islands with the highest potential for offshore wind energy generation—were selected as pilot areas. Since there is a lack of measuring instruments, such as cup anemometers and buoys in these areas (mainly due to their high economic costs), an accurate analysis was carried out to assess the marine energy potential from offshore wind. Since there are only limited options for further expanding the measurement over large areas, the use of satellites makes it easier to overcome this limitation. Undoubtedly, with the advent of new technologies for measuring renewable energy sources (RESs), there could be a significant energy transition in this area that requires a proper orientation of plans to examine the factors influencing these new technologies that can negatively affect most of the available potential. Satellite technology for identifying suitable areas of wind power plants could be a powerful tool that is constantly increasing in its applications but requires good planning to apply it in various projects. Proper planning is only possible with a better understanding of satellite capabilities and different methods for measuring available wind resources. To this end, a better understanding in interdisciplinary fields with the exchange of updated information between different sectors of development, such as universities and companies, will be most effective. In this context, by reviewing the available satellite technologies, the ability of this tool to measure the marine renewable energies (MREs) sector in large and small areas is considered. Secondly, an attempt is made to identify the strengths and weaknesses of using these types of tools and techniques that can help in various projects. Lastly, specific scenarios related to the application of such systems in existing and new developments are reviewed and discussed.


2020 ◽  
Author(s):  
Jared Peters ◽  
Ross O’Connell ◽  
Andrew Wheeler ◽  
Valerie Cummins ◽  
Jimmy Murphy

<p>The implications of climate change are becoming harder to ignore and highlight the need for increased renewable energy production.  Simultaneously, technological developments like larger turbines and floating foundations are improving our ability to harvest offshore wind energy as a renewable resource.  However, despite having an abundant offshore wind energy resource, Ireland is falling behind on its remit to reduce its carbon emissions as part of the European Union’s targets outlined by the 2030 Climate and Energy Framework.  Reducing this inaction is critically important and improvements to Irish renewable energy planning could also be adapted to other locations.  Here we present spatial data rasters created largely from public datasets that have been designed to improve initial planning and opportunities assessments for Irish offshore wind development.  These rasters include information on surficial sediment types, geomorphology, and slope, which are typically not included in preliminary offshore renewable energy assessments despite their importance to turbine foundation designs, scour protection measures, and cable routes.  Furthermore, these rasters allow fundamental predictions on potential benthic habitat changes to be included into site selection models, which could help avoid economically and/or environmentally costly development decisions.  We examine potential uses for these rasters within a multi-criteria decision analysis and discuss the implications of incorporating such geological data during early investigations. </p>


2018 ◽  
Author(s):  
Nuno Bento ◽  
Margarida Fontes

The paper investigates the construction of strategies aiming to up-scale low-carbon innovations from pilot to full commercial scale. This requires a systemic understanding of the evolution of the technology along with the organizations and infrastructures supporting its development. Technological innovation systems concepts operationalize system building processes, including the establishment of constituent elements and the performance of key innovation activities. The study surveys the national roadmaps published between 2009 and 2014 for offshore wind energy in deepwaters (more than 50 m deep) which inform on how actors expect the system to grow, including the innovation activities crucial to achieve it. The roadmaps point to the role of guidance and legitimacy as triggers of changes in other innovation processes (knowledge creation, experimentation and so on) needed for take-off. The analysis reveals that the growth plans conveyed in the roadmaps are overly optimistic when compared with the time taken to develop offshore wind energy in fixed structures for shallow waters. Several countries have adopted supporting policies following the publication of the roadmaps, but weaknesses in crucial innovation processes (e.g. specialized skills) and external factors (e.g. crisis, regulatory approval) resulted in a delay of the first large investments. Policy should be based on realistic expectations and adequate to the phase of innovation, such as the promotion of technology-specific institutions (standards, codes, regulations and so on) in technology up-scaling. New directions for research are also provided.


2021 ◽  
Vol 19 ◽  
pp. 115-120
Author(s):  
L. Castro-Santos ◽  
◽  
A. Filgueira-Vizoso ◽  

The objective of this paper is to examine the importance of independent arrays in the offshore renewable energy farms. In this context, several scenarios have been contemplated for a floating offshore renewable energy farm: a farm only using floating wave energy; a farm only using floating offshore wind energy; and a farm composed by floating wave energy and floating offshore wind energy installed in independent arrays. The article proposes a method to calculate the main economic parameters and decide their economic feasibility. A hypothetic offshore renewable energy farm located in the Galicia region (Spain) has been studied as case of study. Results show which of the scenarios has the best economic results. This method is worthwhile to compare different floating offshore renewable energy technologies in economic terms and help in the decision making of this new emerging sector that can help to rebuild Europe in the post-pandemic period.


Sign in / Sign up

Export Citation Format

Share Document