scholarly journals Emergence of floating offshore wind energy: Technology and industry

2018 ◽  
Author(s):  
Nuno Bento ◽  
Margarida Fontes

The paper investigates the construction of strategies aiming to up-scale low-carbon innovations from pilot to full commercial scale. This requires a systemic understanding of the evolution of the technology along with the organizations and infrastructures supporting its development. Technological innovation systems concepts operationalize system building processes, including the establishment of constituent elements and the performance of key innovation activities. The study surveys the national roadmaps published between 2009 and 2014 for offshore wind energy in deepwaters (more than 50 m deep) which inform on how actors expect the system to grow, including the innovation activities crucial to achieve it. The roadmaps point to the role of guidance and legitimacy as triggers of changes in other innovation processes (knowledge creation, experimentation and so on) needed for take-off. The analysis reveals that the growth plans conveyed in the roadmaps are overly optimistic when compared with the time taken to develop offshore wind energy in fixed structures for shallow waters. Several countries have adopted supporting policies following the publication of the roadmaps, but weaknesses in crucial innovation processes (e.g. specialized skills) and external factors (e.g. crisis, regulatory approval) resulted in a delay of the first large investments. Policy should be based on realistic expectations and adequate to the phase of innovation, such as the promotion of technology-specific institutions (standards, codes, regulations and so on) in technology up-scaling. New directions for research are also provided.

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
José Balibrea Iniesta ◽  
Manuel Monjas Barroso

There is a gap in the literature on the assessment of renewable energy projects regarding the role of regulatory real options (RROs) that do not depend entirely on the project promoter and yet affect the value of the project. This paper provides a methodology for evaluating investments in offshore wind generation in Denmark, based on the use of this type of options. The main results show that these RROs held by the administration, decrease the value of these renewable generation projects in Denmark. This confirms previous research for onshore generation in the same country.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5906
Author(s):  
Sofia Spyridonidou ◽  
Dimitra G. Vagiona

Wind energy has a leading role in achieving a low-carbon or completely carbon-free energy sector in the near future. Scientific research on the site-selection aspects of onshore and offshore wind farms is of great importance, contributing to sustainable, technically and economically viable, and socially acceptable wind energy projects. This systematic review provides direct analysis and assessment of existing site-selection procedures and addresses a gap in knowledge in the onshore and offshore wind energy research field, identifying trends in the thematic modules of site-selection issues. Important insights and useful trends are highlighted in: (1) site-selection methodologies; (2) the type, number, and exclusion limits of exclusion criteria; (3) the type, number, importance, priority, and suitability classes of assessment criteria; (4) studies’ geographic locations; (5) spatial planning scales; (6) wind resource analysis; (7) sensitivity analysis; (8) participatory planning approaches, groups, and contributions; (9) laws, regulations, and policies related to wind farm siting; (10) suitability index classifications (i.e., linguistic and numeric); and (11) micro-siting configuration of wind turbines. Identified insights and trends could motivate the conduction of updated site-selection analyses on onshore and offshore wind energy research, addressing the determined gaps and enhancing global siting implementations.


2021 ◽  
Vol 11 (12) ◽  
pp. 5561
Author(s):  
Gonçalo Calado ◽  
Rui Castro

With the increase in renewable energy connected to the grid, new challenges arise due to its variable supply of power. Therefore, it is crucial to develop new methods of storing energy. Hydrogen can fulfil the role of energy storage and even act as an energy carrier, since it has a much higher energetic density than batteries and can be easily stored. Considering that the offshore wind sector is facing significant growth and technical advances, hydrogen has the potential to be combined with offshore wind energy to aid in overcoming disadvantages such as the high installation cost of electrical transmission systems and transmission losses. This paper aims to outline and discuss the main features of the integration of hydrogen solutions in offshore wind power and to offer a literature review of the current state of hydrogen production from offshore wind. The paper provides a summary of the technologies involved in hydrogen production along with an analysis of two possible hydrogen producing systems from offshore wind energy. The analysis covers the system components, including hydrogen storage, the system configuration (i.e., offshore vs. onshore electrolyzer), and the potential uses of hydrogen, e.g., Power to Mobility, Power to Power, and Power to Gas.


2011 ◽  
Author(s):  
Jacques Beaudry-Losique ◽  
Ted Boling ◽  
Jocelyn Brown-Saracino ◽  
Patrick Gilman ◽  
Michael Hahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document