Overview on Fusion Nuclear Technology Experimental Testing

2016 ◽  
Vol 2 (2) ◽  
Author(s):  
Slavomir Entler ◽  
Jan Kysela

Research Centre Rez in the Czech Republic has carried out a number of research and development activities on the nuclear technology of the fusion reactor International Thermonuclear Experimental Reactor (ITER). These contributions have led to the development of numerous experimental facilities. The initial experimental research related to ITER was focused on the technology of the LiPb eutectic alloy, and a production unit and technological channel were constructed. At a later time, material tests were performed in the neutron field of the LVR-15 research nuclear reactor. Interactions of EUROFER 97 and the LiPb eutectic alloy were examined in in-pile and out-pile tests, and the technology of the LiPb was developed. First wall mock-ups were in-pile and out-pile tested under high heat flux (HHF) cycle loads. At present, a full-size mock-up of the ITER Test Blanket System (TBS) and an HHF testing complex are constructed. This paper provides an overview of the research activities and experimental facilities.

Author(s):  
J. M. Wu ◽  
J. Y. Zhao

High power electronics are widely used in many different areas such as integrated circuit (IC) boards in nuclear reactor control system. Thermal management of electronic devices has been a topic of great interest among many researchers over the last few decades. Microchannel is one of several high-heat-flux removal techniques. Nanofluids with enhanced thermal conductivity and strong temperature- and size-dependent thermal properties are expected to be utilized in microchannels as coolants, which leads to a promising future for such high-heat-flux systems as cooling systems. The performance of the microchannel heat sink (MCHS) using water and Al2O3/water nanofluids, with consideration of different substrate materials, is numerically investigated and compared in the present paper to identify the combined effects of working fluids and substrate materials on the thermal resistance, pumping power and temperature distribution on the substrate surface of a heat sink.


Author(s):  
Saburo TODA ◽  
Kiyoshi YOSHIKAWA ◽  
Toshiyuki TAKAGI ◽  
Masato AKIBA ◽  
Seiichiro YAMAZAKI ◽  
...  

2021 ◽  
Author(s):  
Matthew Szott ◽  
Steven Stemmley ◽  
Cody D Moynihan ◽  
Alfonso de Castro ◽  
David N Ruzic

Abstract As magnetically confined fusion devices improve, the conditions at the walls become increasingly intense. Plasma facing components (PFCs) must withstand these extreme heat and particle loads without damage or degradation. Liquid lithium PFCs are known to be quite resilient, and the presence of lithium also serves to improve plasma properties. The Liquid Metal Infused Trench (LiMIT) concept is an open surface liquid lithium PFC design that has been tested extensively at the University of Illinois and in fusion devices around the world. LiMIT utilizes thermoelectric magnetohydrodynamics (TEMHD) to passively drive liquid lithium flow. This work demonstrates an extension of the LiMIT trench geometry to 3 dimensions. Additively manufactured large pore metallic foams maintain TEMHD drive while drastically improving heat flux handling and resistance to lithium dryout, a phenomenon where locally high TEMHD forces depresses the lithium level and exposes underlying solid structure. COMSOL Multiphysics modeling of the system yields insight into the forces at play in dryout development, and shows the 3-D structures can eliminate dryout. Low heat proof-of-concept experimental testing of the system matches computational results, and high heat flux electron beam tests more than double the proven operational range of a LiMIT-style PFC, to 6.8 MW/m2, with no indications of dryout or impending damage.


1994 ◽  
Vol 56 (1-4) ◽  
pp. 303-307 ◽  
Author(s):  
G. Sciocchetti ◽  
G. Cotellessa ◽  
P. De Felice ◽  
P.G. Baldassini ◽  
M. Bovi ◽  
...  

Abstract A status report is given of the ENEA research activities on calibration and standardisation of radon measurement techniques. A description of radon standards and experimental facilities (the ENEA Radon Chamber and the 222Rn standard generator) developed at the Casaccia Research Centre is given. The experimental procedures to test the charcoal canister radon adsorption are described. The results of investigation of the response of passive plastic detectors (CR-39) at different exposure conditions at the ENEA radon chamber are discussed: dynamic range and accuracy of passive alpha track detectors in the range from 60 to about 7000 kBq.m-3.h radon exposure. Finally a brief description is given of the experimental facility that is under development to test instruments and methods that are used to measure the emanation/exhalation of radon gas from soils and building materials.


2017 ◽  
Author(s):  
Tomio Okawa ◽  
Junki Ohashi ◽  
Ryo Hirata ◽  
Koji Enoki

Sign in / Sign up

Export Citation Format

Share Document