A Numerical and Experimental Investigation of the Slot Film-Cooling Jet With Various Angles

2005 ◽  
Vol 127 (3) ◽  
pp. 635-645 ◽  
Author(s):  
Rongguang Jia ◽  
Bengt Sundén ◽  
Petre Miron ◽  
Bruno Léger

Numerical simulations coupled with laser Doppler velocimetry (LDV) experiments were carried out to investigate a slot jet issued into a cross flow, which is relevant in the film cooling of gas turbine combustors. The film-cooling fluid injection from slots or holes into a cross flow produces highly complicated flow fields. In this paper, the time-averaged Navier-Stokes equations were solved on a collocated body-fitted grid system with the shear stress transport k−ω, V2F k−ϵ, and stress-ω turbulence models. The fluid flow and turbulent Reynolds stress fields were compared to the LDV experiments for three jet angles, namely, 30, 60, and 90 deg, and the jet blowing ratio is ranging from 2 to 9. Good agreement was obtained. Therefore, the present solution procedure was also adopted to calculations of 15 and 40 deg jets. In addition, the temperature fields were computed with a simple eddy diffusivity model to obtain the film-cooling effectiveness, which, in turn, was used for evaluation of the various jet cross-flow arrangements. The results show that a recirculation bubble downstream of the jet exists for jet angles larger than 40 deg, but it vanishes when the angle is <30deg, which is in good accordance with the experiments. The blowing ratio has a large effect on the size of the recirculation bubble and, consequently, on the film cooling effectiveness. In addition, the influence of boundary conditions for the jet and cross flow are also addressed in the paper.

Author(s):  
Rongguang Jia ◽  
Bengt Sunde´n ◽  
Petre Miron ◽  
Bruno Le´ger

Numerical simulations coupled with LDV experiments were carried out to investigate a slot jet issued into a cross flow, which is relevant in the film cooling of gas turbine combustors. The film cooling fluid injection from slots or holes into a cross-flow produces highly complicated flow fields. In this paper, the time-averaged Navier-Stokes equations were solved on a collocated body-fitted grid system with the V2F turbulence model. The fluid flow and turbulent Reynolds stress fields were compared with the LDV experiments for three jet angles, namely, 30-deg, 60-deg, and 90-deg, and the jet blowing ratio is ranging from 2 to 9. Good agreement was obtained. Therefore, the present solution procedure was also adopted to calculations of 15-deg and 40-deg jets. In addition, the temperature fields, which were difficult to measure by experimental methods, were also computed with a simple eddy diffusivity model to obtain the film cooling effectiveness which was used for evaluation of the various jet-cross-flow arrangements. The results show that a recirculation bubble downstream the jet exists for jet angles larger than 40-deg, but it vanishes when the angle is less than 30-deg, which is in good accordance with the experiments. The blowing ratio has a large effect on the size of the recirculation bubble, and consequently on the film cooling effectiveness. In addition, the influence of boundary conditions for the jet and cross-flow are also addressed in the paper.


Author(s):  
Pingfan He ◽  
Dragos Licu ◽  
Martha Salcudean ◽  
Ian S. Gartshore

The effect of varying coolant density on film cooling effectiveness for a turbine blade-model was numerically investigated and compared with experimental data. This model had a semi-circular leading edge with four rows of laterally-inclined film cooling orifices positioned symmetrically about the stagnation line. A curvilinear coordinate-based CFD code was developed and used for the numerical investigation. The code used a domain segmentation strategy in conjunction with general curvilinear grids to model the complex blade configuration. A multigrid method was used to accelerate the convergence rate. The time-averaged, variable-density, Navier-Stokes equations together with the energy or scalar equation were solved. Turbulence closure was attained by the standard k–ε model with a near-wall k model. Either air or CO2 was used as coolant in three cases of injection through single rows and alternatively staggered double raws of holes. Two different blowing rates were investigated in each case and compared with experimental data. The experimental results were obtained using a wind tunnel model, and the mass/heat analogy was used to determine the film cooling effectiveness. The higher density of the carbon dioxide coolant (approximately 1.5 times the density of air) in the isothermal mass injection experiments, was used to simulate the effects of injection of a colder air in the corresponding adiabatic heat transfer situation. Good agreement between calculated and measured film cooling effectiveness was found for low blowing ratio M ≤ 0.5 and the effect of density was not significant. At higher blowing ratio M > 1 the calculations consistently overpredict the measured values of film cooling effectiveness.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Nathan Rogers ◽  
Zhong Ren ◽  
Warren Buzzard ◽  
Brian Sweeney ◽  
Nathan Tinker ◽  
...  

Experimental results are presented for a double wall cooling arrangement which simulates a portion of a combustor liner of a gas turbine engine. The results are collected using a new experimental facility designed to test full-coverage film cooling and impingement cooling effectiveness using either cross flow, impingement, or a combination of both to supply the film cooling flow. The present experiment primarily deals with cross flow supplied full-coverage film cooling for a sparse film cooling hole array that has not been previously tested. Data are provided for turbulent film cooling, contraction ratio of 1, blowing ratios ranging from 2.7 to 7.5, coolant Reynolds numbers based on film cooling hole diameter of about 5000–20,000, and mainstream temperature step during transient tests of 14 °C. The film cooling hole array consists of a film cooling hole diameter of 6.4 mm with nondimensional streamwise (X/de) and spanwise (Y/de) film cooling hole spacing of 15 and 4, respectively. The film cooling holes are streamwise inclined at an angle of 25 deg with respect to the test plate surface and have adjacent streamwise rows staggered with respect to each other. Data illustrating the effects of blowing ratio on adiabatic film cooling effectiveness and heat transfer coefficient are presented. For the arrangement and conditions considered, heat transfer coefficients generally increase with streamwise development and increase with increasing blowing ratio. The adiabatic film cooling effectiveness is determined from measurements of adiabatic wall temperature, coolant stagnation temperature, and mainstream recovery temperature. The adiabatic wall temperature and the adiabatic film cooling effectiveness generally decrease and increase, respectively, with streamwise position, and generally decrease and increase, respectively, as blowing ratio becomes larger.


Author(s):  
Zhonghao Tang ◽  
Gongnan Xie ◽  
Honglin Li ◽  
Wenjing Gao ◽  
Chunlong Tan ◽  
...  

Abstract Film cooling performance of the cylindrical film holes and the bifurcated film holes on the leading edge model of the turbine blade are investigated in this paper. The suitability of different turbulence models to predict local and average film cooling effectiveness is validated by comparing with available experimental results. Three rows of holes are arranged in a semi-cylindrical model to simulate the leading edge of the turbine blade. Four different film cooling structures (including a cylindrical film holes and other three different bifurcated film holes) and four different blowing ratios are studied in detail. The results show that the film jets lift off gradually in the leading edge area as the blowing ratio increases. And the trajectory of the film jets gradually deviate from the mainstream direction to the spanwise direction. The cylindrical film holes and vertical bifurcated film holes have better film cooling effectiveness at low blowing ratio while the other two transverse bifurcated film holes have better film cooling effectiveness at high blowing ratio. And the film cooling effectiveness of the transverse bifurcated film holes increase with the increasing the blowing ratio. Additionally, the advantage of transverse bifurcated holes in film cooling effectiveness is more obvious in the downstream region relative to the cylindrical holes. The Area-Average film cooling effectiveness of transverse bifurcated film holes is 38% higher than that of cylindrical holes when blowing ratio is 2.


Author(s):  
Nirmal Halder ◽  
Arun Saha ◽  
Pradipta Panigrahi

Abstract A simulation study is performed to inspect the influence of delta winglet pair for improving the film cooling effectiveness of gas turbine blade. Incompressible continuity, momentum, energy and two equations - SST model have been used for investigating the nature of flow field, temperature field and turbulent statistics. Reynolds number based on the jet velocity and film cooling hole diameter is 4232. The jet to cross-flow blowing ratio has been varied as 0.5, 1.0 and 1.5. The corresponding Reynolds numbers based on cross-flow velocity and film-hole diameter are equal to 6462, 4229 and 3231 respectively. It is observed that common flow down configuration augments the film cooling effectiveness which attributed to the development of secondary longitudinal vortices. Longitudinal vortices annihilate the counter rotating vortex structures present in the baseline flow. The generation of hairpin vortices and boost of shear layer vortices are modified due to the implementation of Delta winglet pair. The overall turbulence intensity and vorticity get reduced due to the presence of Delta winglet pair. A maximum of 97.46% and a minimum of 61.50% enhancement in film cooling effectiveness is observed at blowing ratio of 1.5 and 0.5 respectively.Wake region of film cooling jet is modified due to Delta winglet pair leading to formation of stagnation region and lower mixing resulting in higher film cooling effectiveness.


2021 ◽  
pp. 1-28
Author(s):  
Zhi-Qiang Yu ◽  
Jianjun Liu ◽  
Chen Li ◽  
Baitao An ◽  
Guang-Yao Xu

Abstract This paper focuses on the influences of the discrete hole shape and layout on the blade endwall film cooling effectiveness. The diffusion slot hole was first applied to the blade endwall and compared with the fan-shaped hole. The effect of upstream purge slot injection on the film cooling performance of the discrete hole was also investigated. Experiments were performed in a linear cascade with a exit Reynolds number of 2.64×105. The film cooling effectiveness on the blade endwall were measured by the pressure sensitive paint technique. Results indicate that the diffusion slot hole significantly increases the film cooling effectiveness on the blade endwall compared to the fan-shaped hole, especially at high blowing ratio. The maximum relative increment of the cooling effectiveness is over 40%. The layout with the discrete holes arranged lining up with the tangent direction of the blade profile offset curves exhibits a comparable film cooling effectiveness with the layout with the discrete holes arranged according to the cross-flow direction. The film cooling effectiveness on the pressure surface corner is remarkably enhanced by deflecting the hole orientation angle towards the pressure surface. The combination of purge slot and diffusion slot holes supplies a full coverage film cooling for the entire blade endwall at coolant mass flow ratio of the purge slot of 1.5% and blowing ratio of 2.5. In addition, the slot injection leads to a non-negligible influence on the cooling performance of the discrete holes near the separation line.


Author(s):  
Lin Ye ◽  
Cun-liang Liu ◽  
Hui-ren Zhu ◽  
Jian-xia Luo ◽  
Ying-ni Zhai

This paper presents an experimental and numerical investigation on the film cooling with different coolant feeding channel structures. Two ribbed cross-flow channels with rib-orientation of 135° and 45° respectively and the plenum coolant channel have been studied and compared to find out the effect of rib orientation on the film cooling performances of cylindrical holes. The film cooling effectiveness and heat transfer coefficient were measured by the transient heat transfer measurement technique with narrow-band thermochromic liquid crystal. Numerical simulations with realizable k-ε turbulence model were also performed to analyze the flow mechanism. The results show that the coolant channel structure has a notable effect on the flow structure of film jet which is the most significant mechanism affecting the film cooling performance. Generally, film cooling cases fed with ribbed cross-flow channels have asymmetric counter-rotating vortex structures and related asymmetric temperature distributions, which make the film cooling effectiveness and the heat transfer coefficient distributions asymmetric to the hole centerline. The discharge coefficient of the 45° rib case is the lowest among the three cases under all the blowing ratios. And the plenum case has higher discharge coefficient than the 135° rib case under low blowing ratio. With the increase of blowing ratio, the discharge coefficient of the 135° rib case gets larger than the plenum case gradually, because the vortex in the upper half region of the coolant channel rotates in the same direction with the film hole inclination direction and makes the jet easy to flow into the film hole in the 135° rib case.


Author(s):  
Jawad S. Hassan ◽  
Savas Yavuzkurt

The capabilities of four two-equation turbulence models in predicting film cooling effectiveness were investigated and their limitations as well as relative performance are presented. The four turbulence models are the standard, RNG, and realizable k-ε models as well as the standard k-ω model all found in the FLUENT CFD code. In all four models, the enhanced wall treatment has been used to resolve the flow near solid boundaries. A systematic approach has been followed in the computational setup to insure grid-independence and accurate solution that reflects the true capabilities of the turbulence models. Exact geometrical and flow-field replicas of an experimental study on discrete-jet film cooling were generated and used in FLUENT. A pitch-to-diameter ratio of 3.04, injection length-to-diameter ratio of 4.6 and density ratios of 0.92 and 0.97 were some of the parameters used in the film cooling analysis. Furthermore, the study covered two levels of blowing ratio (M = 0.5 and 1.5) at an environment of low free-stream turbulence intensity (Tu = 0.1%). The standard k-ε model had the most consistent performance among all considered turbulence models and the best centerline film cooling effectiveness predictions with the results deviating from experimental data by only ±10% and about 20–60% for the low (M = 0.5) and high (M = 1.5) blowing ratio cases, respectively. However, centerline side-view and surface top-view contours of non-dimensional temperature for the standard k-ε cases revealed that the good results for film cooling effectiveness η compared to the experimental data were due to a combination of an over-prediction of jet penetration in the normal direction with an under-prediction of jet spread in the lateral direction. The standard k-ω model completely failed to produce any results that were meaningful with under-predictions of η that ranged between 80 and 85% for the low blowing ratio case and over-predictions of about 200% for the high blowing ratio case. Even though the RNG and realizable models showed to have better predicted the jet spread in the lateral direction compared to the standard k-ε model, there were some aspects of the flow, such as levels of turbulence generated by cross-flow and jet interaction, that were not realistic resulting in errors in the η prediction that ranged from −10% to +80% for the M = 0.5 case and from −80% to +70% for the M = 1.5 case. As a result of this study at this point it was concluded that the standard k-ε model have the most promising potential among the two-equation models considered. It was chosen as the best candidate for further improvement for the simulation of film cooling flows.


Author(s):  
Sarah M. Coulthard ◽  
Ralph J. Volino ◽  
Karen A. Flack

Pulsed film cooling was studied experimentally to determine its effect on film cooling effectiveness. The film cooling jets were pulsed using solenoid valves in the supply air line. Cases with a single row of cylindrical film cooling holes inclined at 35 degrees to the surface of a flat plate were considered at blowing ratios of 0.25, 0.5, 1.0, and 1.5 for a variety of pulsing frequencies and duty cycles. Temperature measurements were made using an infrared camera, thermocouples, and cold wire anemometry. Hot wire anemometry was used for velocity measurements. The local film cooling effectiveness was calculated based on the measured temperatures and the results were compared to baseline cases with continuous blowing. Phase locked flow temperature fields were determined from cold wire surveys. Pulsing at high frequencies helped to improve film cooling effectiveness in some cases by reducing overall jet liftoff. At lower frequencies, pulsing tended to have the opposite effect. With the present geometry and a steady mainflow, pulsing did not provide an overall benefit. The highest overall effectiveness was achieved with continuous jets and a blowing ratio of 0.5. The present results may prove useful for understanding film cooling behavior in engines, where mainflow unsteadiness causes film cooling jet pulsation.


Author(s):  
Dianliang Yang ◽  
Zhenping Feng ◽  
Xiaobing Yu

The effect of the film cooling holes arrangements and the blowing ratio on the tip film cooling effectiveness in a rotating blade with the squealer tip was investigated by using numerical methods in this paper. The first stage rotor blade with squealer tip of GE-E3 engine high pressure turbine was adopted to perform this study. The tip clearance was specified as 1% of the blade height, and the groove depth was specified as 2% of the blade height. The different turbulence models were checked by Kim’s experiment data [1] in 1995, and the standard k-ε turbulence model was chosen to predict the film cooling effectiveness on the blade tip. The film holes were arranged at the tip camber line, the tip division line, the tip pressure side and the pressure surface near tip, respectively. The effect of the holes position on the tip film cooling effectiveness in the rotating blade was studied. The effect of the blowing ratio was analyzed for the cases that the film holes were placed at the tip division line and the pressure surface near tip. The results show that the area-averaged tip film cooling effectiveness reaches the highest when the film holes are placed along the tip division line, and the tip leakage mass flow rate can be reduced by placing the film holes on the pressure surface near tip.


Sign in / Sign up

Export Citation Format

Share Document