Adaptive Fuzzy Sliding Mode Control for MIMO Nonaffine Dutch-Roll System

Author(s):  
Yuhui Wang ◽  
Qingxian Wu ◽  
Xinyan Liu

A robust fuzzy sliding mode controller is presented for a multiple-input–multiple-output (MIMO) Dutch-Roll system with nonaffine inputs and external disturbances. An integrating factor with a nonlinear saturation function is introduced to construct a nonlinear integral sliding mode (NISM) surface to provide better transient response than traditional sliding mode control. Fuzzy logic systems are employed to approximate the unknown nonaffine part of the system directly. Based on Lyapunov method, the tracking errors are guaranteed to be asymptotically stable with the additional adaptive compensation terms. To verify the feasibility and effectiveness of the proposed controller, the Dutch-Roll system is presented for simulation.

Author(s):  
Imen Saidi ◽  
Asma Hammami

Introduction: In this paper, a robust sliding mode controller is developed to control an orthosis used for rehabilitation of lower limb. Materials and Methods: The orthosis is defined as a mechanical device intended to physically assist a human subject for the realization of his movements. It should be adapted to the human morphology, interacting in harmony with its movements, and providing the necessary efforts along the limbs to which it is attached. Results: The application of the sliding mode control to the Shank-orthosis system shows satisfactory dynamic response and tracking performances. Conclusion: In fact, position tracking and speed tracking errors are very small. The sliding mode controller effectively absorbs disturbance and parametric variations, hence the efficiency and robustness of our applied control.


Sign in / Sign up

Export Citation Format

Share Document