Demand Response Using Heterogeneous Thermostatically Controlled Loads: Characterization of Aggregate Power Dynamics

Author(s):  
Donald Docimo ◽  
Hosam K. Fathy

This article presents an analysis of the damping and beating effects within the aggregate power demand of heterogeneous thermostatically controlled loads (TCLs). Demand response using TCLs is an appealing method to enable higher levels of penetration of intermittent renewable resources into the electric grid. Previous literature covers the benefits of TCL population heterogeneity for control purposes, but the focus is solely on the damping observed in these systems. This work, in contrast, characterizes the combined damping and beating effects in the power demand for different types of TCL parameter heterogeneity. The forced aggregate dynamics of TCLs have been shown to be bilinear when set point temperature adjustment is used as a control input. This motivates the article's use of free response dynamics, which are linear, to characterize both the damping and beating phenomena. A stochastic parameter distribution is applied to the homogeneous power demand solution, furnishing an analytic expression for the aggregate power demand. The time-varying damping ratios of this reduced-order model characterize the damping in the system. By analyzing a variety of case studies, it is determined that only a distribution of the TCL characteristic frequency creates damping in the aggregate power dynamics. The beating effect decays over time due to damping, and a relationship between the beat's amplitude and period is presented.

Author(s):  
Donald J. Docimo ◽  
Hosam K. Fathy

This paper presents an analysis of the damping and beating effects within the aggregate power demand of heterogeneous thermostatically controlled loads (TCLs). Demand response using TCLs is an appealing method to enable higher levels of penetration of intermittent renewable resources into the electric grid. Previous literature covers the benefits of TCL population heterogeneity for control purposes, but the focus is solely on the damping observed in these systems. This work is, to the best of the authors’ knowledge, the first to characterize the combined damping and beating response of power demand versus the level of TCL population parameter heterogeneity. The forced aggregate dynamics of TCLs have been shown to be bilinear when set point temperature adjustment is used as a control input. This motivates the paper’s use of free response dynamics, which are linear, to characterize both the damping and beating phenomena. A stochastic parameter distribution is applied to the homogeneous power demand solution, furnishing an analytic expression for aggregate power demand. The resulting analysis shows that increasing parameter heterogeneity increases damping and shortens the beat period.


2021 ◽  
Vol 236 ◽  
pp. 01034
Author(s):  
Wang Zhenyu ◽  
Zhang Jianhua ◽  
Hu Chunlan ◽  
Xu Lanlan ◽  
Han Yongjun

.In recent years, the development of new energy has become a bottleneck. As a high-quality demand side response resource that can be flexibly dispatched, thermal load can be used to promote the consumption and utilization of new energy. Based on the theory of peak valley electricity price and power demand response mechanism, this paper designs a demand response model of thermal price type, which uses time-sharing heat price to guide users to use heat orderly on the heating side. The simulation results show that the reasonable setting of heat price and satisfaction constraints of different heating modes can effectively change the heating mode of the user side and alleviate the contradiction between the supply and demand of thermal power, reduce the heating cost and realize the economic operation of the system.


2017 ◽  
Author(s):  
Purushottam D. Dixit ◽  
Eugenia Lyashenko ◽  
Mario Niepel ◽  
Dennis Vitkup

AbstractPredictive models of signaling networks are essential tools for understanding cell population heterogeneity and designing rational interventions in disease. However, using network models to predict signaling dynamics heterogeneity is often challenging due to the extensive variability of signaling parameters across cell populations. Here, we describe a Maximum Entropy-based fRamework for Inference of heterogeneity in Dynamics of sIgAling Networks (MERIDIAN). MERIDIAN allows us to estimate the joint probability distribution over signaling parameters that is consistent with experimentally observed cell-to-cell variability in abundances of network species. We apply the developed approach to investigate the heterogeneity in the signaling network activated by the epidermal growth factor (EGF) and leading to phosphorylation of protein kinase B (Akt). Using the inferred parameter distribution, we also predict heterogeneity of phosphorylated Akt levels and the distribution of EGF receptor abundance hours after EGF stimulation. We discuss how MERIDIAN can be generalized and applied to problems beyond modeling of heterogeneous signaling dynamics.


2019 ◽  
Vol 20 (1) ◽  
pp. 140-147 ◽  
Author(s):  
H. Tadokoro ◽  
H. Koibuchi ◽  
S. Takahashi ◽  
S. Kakudou ◽  
Y. Takata ◽  
...  

Abstract Demand-response is a scheme in which electricity suppliers and consumers collaborate for smarter usage of electricity aiming to mitigate the gap between supply and demand. It makes electricity consumers receive incentives through curtailing or increasing power demand during a certain period subject to request from the power infrastructure. Water utilities, as heavy electricity consumers, could participate in the scheme through shifting power demand by modifying pump operation schedule, utilizing reservoirs' buffering stock capability. We developed a conveyance/transmission pump scheduling algorithm to be applied in the scheme that requires a quick modification of pumping schedule to respond to a request. In addition, we made test bedding through a simulation approach utilizing actual data from Osaka Water Supply Authority to show the scheme's potential for waterworks and the effectiveness of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document