Effects of Laser Radiation on the Wetting and Diffusion Characteristics of Kovar Alloy on Borosilicate Glass

Author(s):  
Min Zhang ◽  
Y. Lawrence Yao ◽  
Chang Jun Chen ◽  
Panjawat Kongsuwan ◽  
Grant Brandal ◽  
...  

The purpose of this study was to investigate the advantages of laser surface melting for improving wetting over the traditional approach. For comparison, kovar alloy was preoxidized in atmosphere at 700 °C for 10 min, and then wetted with borosilicate glass powder at 1100 °C with different holding time in atmosphere. The proposed approach used a Nd:YAG laser to melt the surface of the kovar alloy sample in atmosphere, then wetted with borosilicate glass powder at 1100 °C with the same holding time. The laser melted surface shows a decrease in contact angle (CA) from 47.5 deg to 38 deg after 100 min. X-ray photoelectron spectroscopy (XPS) analysis shows that the surface and adjacent depth have higher concentration of FeO for laser treated kovar (Kovar(L)) than that on traditional thermal treated kovar (kovar(P)). This is attributed to the following improved wetting and diffusion process. The adhesive oxide layer formed on kovar (L) may enhance the oxygen diffusion into the substrate and iron diffusion outward to form an outside layer. This is an another way to enhance the wetting and diffusion process when compared to the delaminated oxide scales formed on kovar (P) surface. The diffusion mechanisms were discussed for both approaches. Scanning electron microscope (SEM) revealed that an iron oxide interlayer in the joint existed under both conditions. Fayalite nucleated on the iron oxide layer alloy and grew into the glass. In both cases, neither Co nor Ni were involved in the chemical bonding during wetting process. The work has shown that laser surface melting can be used to alter the wetting and diffusion characteristics of kovar alloy onto borosilicate glass.

2014 ◽  
Vol 24 (8) ◽  
pp. 1868-1884 ◽  
Author(s):  
Xing-Yao YANG ◽  
Jiong YU ◽  
IBRAHIM Turgun ◽  
Bin LIAO ◽  
Yu-Rong QIAN

2010 ◽  
Vol 1263 ◽  
Author(s):  
Rebecca Ann Cantrell ◽  
Paulette Clancy

AbstractUsing atomic-scale Molecular Dynamics (MD) and energy minimization techniques in conjunction with semi-empirical MM3 potential energy functions, we consider the adsorption of a C60 molecule on a series of hypothetical pentacene structures that vary only in the tilt of the angle that the short axis of the pentacene molecules makes with the underlying surface (the long axis lying essentially flat, as on a metal substrate). Important relationships were discovered between the angle adopted by the short axis of pentacene on the surface, φ1, and the adsorption and diffusion characteristics of C60. Static energy calculations show that there is a transition of the deepest energy minima from between the pentacene rows at low values of φ1 to within the rows at high values of φ1, where φ1 is the angle the pentacene short axis makes with the surface. MD confirms this trend by the predominant residence locations at the extreme φ1 values. Furthermore, MD results suggest that the C60 traverses the pentacene surface in the east-west direction for lower φ1 values (φ1 ≤ 40°) and in the north-south direction for higher φ1 values (φ1 ≥ 70°). Taking both static and dynamic results together, the most favorable tilt angles for mono-directional nanowire growth should occur between 70° and 80° off-normal.


2021 ◽  
Vol 66 (1) ◽  
pp. 42-48
Author(s):  
Kien Pham Huu ◽  
Linh Nguyen Hong ◽  
Hien Pham Xuan ◽  
Linh Nguyen Thi Thuy ◽  
Quang Phan Dinh ◽  
...  

In this paper, we perform a simulation about liquid GeO2. The structure and diffusion process are analyzed through the radial distribution function, the distribution of GeOx (x = 4, 5, 6) structural units, length distribution, angle distribution, and data visualization. Simulation results show that the structure of liquid GeO2 composes clusters of GeO4, GeO5, or GeO6. These clusters have sizes depending on pressure and are distributed heterogeneously in space. This result confirms the origin of dynamical heterogeneity in the liquid oxide systems. In addition, the diffusion coefficient of Ge and O decreases upon pressure. We show that the diffusion relates to the breaking bond Ge-O.


1983 ◽  
Vol 18 (2) ◽  
pp. 599-604 ◽  
Author(s):  
D. Ritchie ◽  
H. A. Schaeffer ◽  
D. White
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document