Experimental and Computational Study of the Effect of Momentum-Flux Ratio on High-Pressure Nozzle Guide Vane Endwall Cooling Systems

2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Francesco Ornano ◽  
Thomas Povey

High-pressure (HP) nozzle guide vane (NGV) endwalls are often characterized by highly three-dimensional (3D) flows. The flow structure depends on the incoming boundary layer state (inlet total pressure profile) and the (static) pressure gradients within the vane passage. In many engine applications, this can lead to strong secondary flows. The prediction and design of optimized endwall film cooling systems is therefore challenging and is a topic of current research interest. A detailed experimental investigation of the film effectiveness distribution on an engine-realistic endwall geometry is presented in this paper. The film cooling system was a fairly conventional axisymmetric double-row configuration. The study was performed on a large-scale, low-speed wind tunnel using infrared (IR) thermography. Adiabatic film effectiveness distributions were measured using IR cameras, and tests were performed across a wide range of coolant-to-mainstream momentum-flux and mass flow ratios (MFRs). Complex interactions between coolant film and vane secondary flows are presented and discussed. A particular feature of interest is the suppression of secondary flows (and associated improved adiabatic film effectiveness) beyond a critical momentum flux ratio. Jet liftoff effects are also observed and discussed in the context of sensitivity to local momentum flux ratio. Full coverage experimental results are also compared to 3D, steady-state computational fluid dynamics (CFD) simulations. This paper provides insights into the effects of momentum flux ratio in establishing similarity between cascade conditions and engine conditions and gives design guidelines for engine designers in relation to minimum endwall cooling momentum flux requirements to suppress endwall secondary flows.

Author(s):  
Francesco Ornano ◽  
Thomas Povey

High pressure nozzle guide vane endwalls are often characterized by highly three-dimensional flows. The flow structure depends on the incoming boundary layer state (inlet total pressure profile) and the (static) pressure gradients within the vane passage. In many engine applications this can lead to strong secondary flows. The prediction and design of optimized endwall film cooling systems is therefore challenging, and a topic of current research interest. A detailed experimental investigation of the film effectiveness distribution on an engine-realistic endwall geometry is presented in this paper. The film cooling system was a fairly conventional axisymmetric double row configuration. The study was performed on a large-scale, low-speed wind tunnel using infrared thermography. Adiabatic film effectiveness distributions were measured using IR cameras and tests were performed across a wide range of coolant-to-mainstream momentum-flux and mass flow ratios. Complex interactions between coolant film and vane secondary flows are presented and discussed. A particular feature of interest is the suppression of secondary flows (and associated improved adiabatic film effectiveness) beyond a critical momentum flux ratio. Jet lift-off effects are also observed, and discussed in the context of sensitivity to local momentum flux ratio. Full coverage experimental results are also compared to three-dimensional, steady-state CFD simulations. This paper provides insights into the effects of momentum flux ratio in establishing similarity between cascade conditions and engine conditions, and gives design guidelines for engine designers in relation to minimum endwall cooling momentum flux requirements to suppress endwall secondary flows.


Author(s):  
C. Osnaghi ◽  
A. Perdichizzi ◽  
M. Savini ◽  
P. Harasgama ◽  
E. Lutum

The paper presents the results of an investigation on the aerodynamic performance of a full coverage film-cooled nozzle guide vane. The blading is a typical high pressure turbine vane of advanced design, working in the high subsonic regime. Tests have been carried out for a wide range of conditions, including variations in Mach number, coolant to mainstream mass flow rate ratio and location of the coolant injection. Both air and carbon dioxide at ambient conditions have been utilized, as coolant flow. Measurements have been performed in a plane located at 0.5 axial chord downstream of the trailing edge by means of a miniaturized five-hole pressure probe. Performances, in terms of losses, flow angles and profile pressure distributions, for different cooling mass flow rates are presented and compared to the results of the solid blade tests (i.e. with no cooling holes). The results showed a significant increase of the losses with blowing. Test with air and carbon dioxide provided almost equal losses if carried out at the same global momentum flux ratio; however the density ratio was found to influence slightly the share of the coolant fluid among the injection rows and the local momentum flux ratio as well. In order to define the individual contributions of groups of cooling rows on the performance of the blade, three different modes of injection have been tested, namely full, trailing edge and shower head injection. The main trend observed is that trailing edge injection produces the least amount of additional losses at high blowing rates. Full-coverage film-cooling injection did not lead to marked variations in the blade pressure distribution and/or outlet flow angle.


Author(s):  
C. R. B. Day ◽  
M. L. G. Oldfield ◽  
G. D. Lock

This paper examines the effect of aerofoil surface film cooling on the aerodynamic efficiency of an annular cascade of transonic nozzle guide vanes. A dense foreign gas (SF6/Ar mixture) is used to simulate engine representative coolant-to-mainstream density ratios under ambient conditions. The flowfield measurements have been obtained using a four-hole pyramid probe in a short duration blowdown facility which correctly models engine Reynolds and Mach numbers, as well as the inlet turbulence intensity. The use of foreign gas coolant poses specific challenges not present in an air-cooled cascade, and this paper addresses two. Firstly, a novel method for the determination of mass flow from pneumatic probe data in a heterogeneous gas environment is presented which eliminates the need to measure concentration in order to determine loss. Secondly, the authors argue on the grounds of dimensionless similarity that momentum flux ratio is to be preferred to blowing rate for the correct parametrisation of film cooling studies with varying coolant densities. Experimental results are presented as area traverse maps, from which values for loss have been calculated. It is shown that air and foreign gas at the same momentum flux ratio give very similar results, and that the main difference between cooled and uncooled configurations is an increase in wake width. Interestingly, it is shown that an increase in the momentum flux ratio above the design value with foreign gas coolant reduces the overall loss compared with the design value. The data has been obtained both for purposes of design and for CFD code validation.


1999 ◽  
Vol 121 (1) ◽  
pp. 145-151 ◽  
Author(s):  
C. R. B. Day ◽  
M. L. G. Oldfield ◽  
G. D. Lock

This paper examines the effect of aerofoil surface film cooling on the aerodynamic efficiency of an annular cascade of transonic nozzle guide vanes. A dense foreign gas (SF6/Ar mixture) is used to simulate engine representative coolant-to-mainstream density ratios under ambient conditions. The flowfield measurements have been obtained using a four-hole pyramid probe in a short duration blowdown facility that correctly models engine Reynolds and Mach numbers, as well as the inlet turbulence intensity. The use of foreign gas coolant poses specific challenges not present in an air-cooled cascade, and this paper addresses two. First, a novel method for the determination of mass flow from pneumatic probe data in a heterogeneous gas environment is presented that eliminates the need to measure concentration in order to determine loss. Second, the authors argue on the grounds of dimensionless similarity that momentum flux ratio is to be preferred to blowing rate for the correct parameterization of film cooling studies with varying coolant densities. Experimental results are presented as area traverse maps, from which values for loss have been calculated. It is shown that air and foreign gas at the same momentum flux ratio give very similar results, and that the main difference between cooled and uncooled configurations is an increase in wake width. Interestingly, it is shown that an increase in the momentum flux ratio above the design value with foreign gas coolant reduces the overall loss compared with the design value. The data have been obtained both for purposes of design and for CFD code Validation.


Author(s):  
Mahmood H. Alqefl ◽  
Kedar P. Nawathe ◽  
Pingting Chen ◽  
Rui Zhu ◽  
Yong W. Kim ◽  
...  

Abstract Flow over gas turbine endwalls is complex and highly three-dimensional. As boundaries for modern engine designs are pushed, this already-complex flow is affected by aggressive application of film cooling flows that actively interact. This two-part study describes, experimentally, the aero-thermal interaction of cooling flows near the endwall of a first stage nozzle guide vane passage. The approach flow conditions represent flow exiting a low-NOx combustor. The test section includes geometric and cooling details of a combustor-turbine interface in addition to endwall film cooling flows injected upstream of the passage. The first part of this study describes in detail, the passage aerodynamics as affected by injection of cooling flows. It reveals a system of secondary flows, including the newly-discovered Impingement Vortex, which redefines our understanding of the aerodynamics of flow in a modern, film-cooled, first-stage vane row. The second part investigates, through thermal measurements, the distribution, mixing and disruption of cooling flows over the endwall. Measurements are made with and without active endwall film cooling. Descriptions are made through adiabatic surface effectiveness measurements and correlations with in-passage velocity (presented in part one) and thermal fields. Results show that the newly-discovered impingement vortex has a positive effect on coolant distribution through passage vortex suppression and by carrying the coolant to hard-to-cool regions in the passage, including the pressure surface near the endwall.


2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Mahmood H. Alqefl ◽  
Kedar P. Nawathe ◽  
Pingting Chen ◽  
Rui Zhu ◽  
Yong W. Kim ◽  
...  

Abstract Modern gas turbines are subjected to very high thermal loading. This leads to a need for aggressive cooling to protect components from damage. Endwalls are particularly challenging to cool due to a complex system of secondary flows near them that wash and disrupt the protective coolant films. This highly three-dimensional flow not only affects but is also affected by the momentum of film cooling flows, whether injected just upstream of the passage to intentionally cool the endwall or as combustor cooling flows injected further upstream in the engine. This complex interaction between the different cooling flows and passage aerodynamics has been recently studied in a first stage nozzle guide vane. The present paper presents a detailed study on the sensitivity of aero-thermal interactions to endwall film cooling mass flow to mainstream flow ratio. The test section represents a first stage nozzle guide vane with a contoured endwall and endwall film cooling injected just upstream of it. The test section also includes an engine-representative combustor–turbine interface geometry with combustor cooling flows injected at a constant rate. The approach flow conditions represent flow exiting a low-NOx combustor. Adiabatic surface thermal measurements and in-passage velocity and thermal field measurements are presented and discussed. The results show the dynamics of passage vortex suppression and the increase of impingement vortex strength as MFR changes. The effects of these changes of secondary flows on coolant distribution are presented.


2021 ◽  
pp. 1-39
Author(s):  
Mahmood H. Alqefl ◽  
Kedar P. Nawathe ◽  
Pingting Chen ◽  
Rui Zhu ◽  
Yong Kim ◽  
...  

Abstract Flow over gas turbine endwalls is complex and highly three-dimensional. As boundaries for modern engine designs are pushed, this already-complex flow is affected by aggressive application of film cooling flows that actively interact. This two-part study describes, experimentally, the aero-thermal interaction of cooling flows near the endwall of a first stage nozzle guide vane passage. The approach flow conditions represent flow exiting a low-NOx combustor. The test section includes geometric and cooling details of a combustor-turbine interface in addition to endwall film cooling flows injected upstream of the passage. The first part of this study describes in detail, the passage aerodynamics as affected by injection of cooling flows. It reveals a system of secondary flows, including the newly-discovered Impingement Vortex, which redefines our understanding of the aerodynamics of flow in a modern, film-cooled, first-stage vane row. The second part investigates, through thermal measurements, the distribution, mixing and disruption of cooling flows over the endwall. Measurements are made with and without active endwall film cooling. Descriptions are made through adiabatic surface effectiveness measurements and correlations with in-passage velocity (presented in part one) and thermal fields. Results show that the newly-discovered impingement vortex has a positive effect on coolant distribution through passage vortex suppression and by carrying the coolant to hard-to-cool regions in the passage, including the pressure surface near the endwall.


Author(s):  
Mahmood H. Alqefl ◽  
Kedar P. Nawathe ◽  
Pingting Chen ◽  
Rui Zhu ◽  
Yong W. Kim ◽  
...  

Abstract The first stage turbine of a modern gas turbine is subjected to high thermal loads which lead to a need for aggressive cooling schemes to protect its components from melting. Endwalls are particularly challenging to cool due to the complex system of secondary flows near them that wash the protective film coolants into the mainstream. This paper shows that without including combustor cooling, the complex secondary flow physics are not representative of modern engines. Aggressive injection of all cooling flows upstream of the passage is expected to interact and change passage aerodynamics and, subsequently, mixing and transport of coolants. This study describes, experimentally, the aero-thermal interaction of cooling flows near the endwall of a first stage nozzle guide vane passage. The test section involves an engine-representative combustor-turbine interface geometry, combustor coolant flow and endwall film cooling flow injected upstream of a linear cascade. The approach flow conditions represent flow exiting a cooled, low-NOx combustor. This first part of this two-part study aims to understand the complex aerodynamics near the endwall through detailed measurements of passage three-dimensional velocity fields with and without endwall film cooling. The aerodynamic measurements reveal a dominant vortex in the passage, named here as the Impingement Vortex, that opposes the passage vortex formed at the airfoil leading edge plane. This Impingement Vortex completely changes our description of flow over a modern film cooled endwall.


2021 ◽  
pp. 1-54
Author(s):  
Mahmood H. Alqefl ◽  
Kedar P. Nawathe ◽  
Pingting Chen ◽  
Rui Zhu ◽  
Yong W. Kim ◽  
...  

Abstract The first stage turbine of a modern gas turbine is subjected to high thermal loads which lead to a need for aggressive cooling schemes to protect its components from melting. Endwalls are particularly challenging to cool due to the complex system of secondary flows near them that wash the protective film coolants into the mainstream. This paper shows that without including combustor cooling, the complex secondary flow physics are not representative of modern engines. Aggressive injection of all cooling flows upstream of the passage is expected to interact and change passage aerodynamics and, subsequently, mixing and transport of coolants. This study describes, experimentally, the aero-thermal interaction of cooling flows near the endwall of a first stage nozzle guide vane passage. The test section involves an engine-representative combustor-turbine interface geometry, combustor coolant flow and endwall film cooling flow injected upstream of a linear cascade. The approach flow conditions represent flow exiting a cooled, low-NOx combustor. This first part of this two-part study aims to understand the complex aerodynamics near the endwall through detailed measurements of passage three-dimensional velocity fields with and without endwall film cooling. The aerodynamic measurements reveal a dominant vortex in the passage, named here as the Impingement Vortex, that opposes the passage vortex formed at the airfoil leading edge plane. This Impingement Vortex completely changes our description of flow over a modern film cooled endwall.


Author(s):  
T. I-P. Shih ◽  
Y.-L. Lin ◽  
T. W. Simon

Computations were performed to study the three-dimensional flow and temperature distribution in a nozzle guide vane that has one flat and one contoured endwall with and without film cooling injected from two slots, one on each endwall located just upstream of the airfoil. For the contoured endwall, two locations of the same contouring were investigated, one with all contouring upstream of the airfoil and another with the contouring starting upstream of the airfoil and continuing through the airfoil passage. Results obtained show that when the contouring is all upstream of the airfoil, secondary flows on both the flat and the contoured endwalls are similar in magnitude. When the contouring starts upstream of the airfoil and continues through the airfoil passage, secondary flows on the contoured endwall are markedly weaker than those on the flat endwall. With weaker secondary flows on the contoured endwall, film-cooling effectiveness there is greatly improved. This computational study is based on the ensemble-averaged conservation equations of mass, momentum (compressible Navier-Stokes), and energy. Effects of turbulence were modeled by the low Reynolds number shear-stress transport k-ω model. Solutions were generated by a cell-centered, finite-volume method that uses third-order accurate flux-difference splitting of Roe with limiters and multigrid acceleration of a diagonalized ADI scheme with local time stepping on patched/embedded structured grids.


Sign in / Sign up

Export Citation Format

Share Document