Chaotic Behavior and Feedback Control of Magnetorheological Suspension System With Fractional-Order Derivative

Author(s):  
Chengyuan Zhang ◽  
Jian Xiao

The fractional differential equations of the single-degree-of-freedom (DOF) quarter vehicle with a magnetorheological (MR) suspension system under the excitation of sine are established, and the numerical solution is acquired based on the predictor–corrector method. The analysis of phase trajectory, time domain response, and Poincaré section shows that the nonlinear dynamic characteristics between fractional and integer-order suspension systems are quite different, which proves the superiority of using fractional order to describe the physical properties. By discussing the influence of each parameter on the vibration, the range of parameters to avoid the chaotic vibration is obtained. The variable feedback control is used to control the chaotic vibration effectively.

10.6036/10125 ◽  
2021 ◽  
Vol 96 (3) ◽  
pp. 322-328
Author(s):  
JIANCHAO ZHANG ◽  
Zhan Chen ◽  
Jun Wang ◽  
Yufei Hu

Vehicle suspension systems generally have non-smooth factors, such as clearances, collision, and constraint. The bad dynamic behaviors caused by these non-smooth factors have not been controlled effectively, thus influencing the driving performance and riding comfort of vehicles. To explore the dynamic characteristics of non-smooth suspension systems for controlling the bad dynamic behaviors, an approximate analytical solution to the response of a two-degree of freedom nonlinear suspension system, which has a fractional-order displacement feedback under harmonic excitation, was deduced by the Krylov–Bogoliubov (KB) method. This analytical solution was verified by the numerical solution of the suspension system. Moreover, the response of the suspension system with fractional-order displacement feedback control was compared with those of the systems without feedback control and traditional integer-order control. The influences of the main parameters of the system on the dynamic suspension characteristics were analyzed thoroughly. Finally, the stability of the suspension system was analyzed by plotting the maximum Lyapunov index diagram. Results show that compared with the systems without feedback control and with traditional integer-order control, the nonlinear suspension system with fractional-order displacement feedback control can significantly improve vehicle acceleration, the dynamic deflection of the suspension, and the displacement of the vehicle body. Controlling the nonlinear stiffness coefficient of the suspension system within 103–106 is conducive to decreasing the dynamic deflection of the suspension system of vehicles, while increasing the fractional-order control coefficient and the fractional order is beneficial to controlling the dynamic deflection of the suspension system and the displacement of the vehicle body. Conclusions obtained in the study can provide unique references for the optimal design and control of nonlinear suspension systems with fractional-order displacement feedback control. Keywords: suspension; non-smooth; fractional order; dynamics; analytical solution; nonlinear.


2017 ◽  
Vol 37 (3) ◽  
pp. 554-564
Author(s):  
Canchang Liu ◽  
Chicheng Ma ◽  
Jilei Zhou ◽  
Lu Liu ◽  
Shuchang Yue ◽  
...  

A two-degree-of-freedom nonlinear vibration system of a quarter vehicle suspension system is studied by using the feedback control method considered the fractional-order derivative damping. The nonlinear dynamic model of two-degree-of-freedom vehicle suspension system is built and linear velocity and displacement controllers are used to control the nonlinear vibration of the vehicle suspension system. A case of the 1:1 internal resonance is considered. The amplitude–frequency response is obtained with the multiscale method. The asymptotic stability conditions of the nonlinear system can be gotten by using the Routh–Hurwitz criterion and the ranges of control parameters are gained in the condition of stable solutions to the system. The simulation results show that the feedback control can effectively reduce the amplitude of primary resonance, weaken or even eliminate the nonlinear vibration characteristics of the suspension system. Fractional orders have an impact on control performance, which should be considered in the control problem. The study will provide a theoretical basis and reference for the optimal design of the vehicle suspension system.


2020 ◽  
Vol 132 ◽  
pp. 109530 ◽  
Author(s):  
Malik Zaka Ullah ◽  
Fouad Mallawi ◽  
Dumitru Baleanu ◽  
Ali Saleh Alshomrani

2018 ◽  
Vol 37 (3) ◽  
pp. 456-467 ◽  
Author(s):  
Hao You ◽  
Yongjun Shen ◽  
Haijun Xing ◽  
Shaopu Yang

In this paper the optimal control and parameters design of fractional-order vehicle suspension system are researched, where the system is described by fractional-order differential equation. The linear quadratic optimal state regulator is designed based on optimal control theory, which is applied to get the optimal control force of the active fractional-order suspension system. A stiffness-damping system is added to the passive fractional-order suspension system. Based on the criteria, i.e. the force arising from the accessional stiffness-damping system should be as close as possible to the optimal control force of the active fractional-order suspension system, the parameters of the optimized passive fractional-order suspension system are obtained by least square algorithm. An Oustaloup filter algorithm is adopted to simulate the fractional-order derivatives. Then, the simulation models of the three kinds of fractional-order suspension systems are developed respectively. The simulation results indicate that the active and optimized passive fractional-order suspension systems both reduce the value of vehicle body vertical acceleration and improve the ride comfort compared with the passive fractional-order suspension system, whenever the vehicle is running on a sinusoidal surface or random surface.


Filomat ◽  
2018 ◽  
Vol 32 (11) ◽  
pp. 3779-3789 ◽  
Author(s):  
Yadong Liu ◽  
Wenjun Liu

In this paper, we study the dynamic behavior and control of the fractional-order nutrientphytoplankton-zooplankton system. First, we analyze the stability of the fractional-order nutrient-plankton system and get the critical stable value of fractional orders. Then, by applying the linear feedback control and Routh-Hurwitz criterion, we yield the sufficient conditions to stabilize the system to its equilibrium points. Finally, Under a modified fractional-order Adams-Bashforth-Monlton algorithm, we simulate the results respectively.


Author(s):  
Huatao Chen ◽  
Kun Zhao ◽  
Juan L.G. Guirao ◽  
Dengqing Cao

AbstractFor the entry guidance problem of hypersonic gliding vehicles (HGVs), an analytical predictor–corrector guidance method based on feedback control of bank angle is proposed. First, the relative functions between the velocity, bank angle and range-to-go are deduced, and then, the analytical relation is introduced into the predictor–corrector algorithm, which is used to replace the traditional method to predict the range-to-go via numerical integration. To eliminate the phugoid trajectory oscillation, a method for adding the aerodynamic load feedback into the control loop of the bank angle is proposed. According to the quasi-equilibrium gliding condition, the function of the quasi-equilibrium glide load along with the velocity variation is derived. For each guidance period, the deviation between the real-time load and the quasi-equilibrium gliding load is revised to obtain a smooth reentry trajectory. The simulation results indicate that the guidance algorithm can adapt to the mission requirements of different downranges, and it also has the ability to guide the vehicle to carry out a large range of lateral maneuvers. The feedback control law of the bank angle effectively eliminates the phugoid trajectory oscillation and guides the vehicle to complete a smooth reentry flight. The Monte Carlo test indicated that the guidance precision and robustness are good.


Author(s):  
Xindong Si ◽  
Hongli Yang

AbstractThis paper deals with the Constrained Regulation Problem (CRP) for linear continuous-times fractional-order systems. The aim is to find the existence conditions of linear feedback control law for CRP of fractional-order systems and to provide numerical solving method by means of positively invariant sets. Under two different types of the initial state constraints, the algebraic condition guaranteeing the existence of linear feedback control law for CRP is obtained. Necessary and sufficient conditions for the polyhedral set to be a positive invariant set of linear fractional-order systems are presented, an optimization model and corresponding algorithm for solving linear state feedback control law are proposed based on the positive invariance of polyhedral sets. The proposed model and algorithm transform the fractional-order CRP problem into a linear programming problem which can readily solved from the computational point of view. Numerical examples illustrate the proposed results and show the effectiveness of our approach.


Sign in / Sign up

Export Citation Format

Share Document