Hybrid State Space Modeling of a Spark Ignition Engine for Online Fault Diagnosis

2017 ◽  
Vol 140 (4) ◽  
Author(s):  
E. P. Nadeer ◽  
Amit Patra ◽  
Siddhartha Mukhopadhyay

In this work, a nonlinear hybrid state space model of a complete spark ignition (SI) gasoline engine system from throttle to muffler is developed using the mass and energy balance equations. It provides within-cycle dynamics of all the engine variables such as temperature, pressure, and mass of individual gas species in the intake manifold (IM), cylinder, and exhaust manifold (EM). The inputs to the model are the same as that commonly exercised by the engine control unit (ECU), and its outputs correspond to available engine sensors. It uses generally known engine parameters, does not require extensive engine maps found in mean value models (MVMs), and requires minimal experimentation for tuning. It is demonstrated that the model is able to capture a variety of engine faults by suitable parameterization. The state space modeling is parsimonious in having the minimum number of integrators in the model by appropriate choice of state. It leads to great computational efficiency due to the possibility of deriving the Jacobian expressions analytically in applications such as on-board state estimation. The model was validated both with data from an industry standard engine simulation and those from an actual engine after relevant modifications. For the test engine, the engine speed and crank angle were extracted from the crank position sensor signal. The model was seen to match the true values of engine variables both in simulation and experiments.

Author(s):  
Abdul Rahman ◽  
Asnawi Asnawi ◽  
Reza Putra ◽  
Hagi Radian ◽  
Tri Waluyo

Bioethanol characteristics can be used as an alternative fuel to spark-ignition (SI) engines to reduce emissions. This experiment evaluates the production of emissions for SI engines using hydrogen enrichment in the gasoline-bioethanol fuel blends. The fraction of bioethanol fuel blend was added to the gasoline fuel of 10% by volume and hydrogen fuel produced by the electrolysis process with a dry cell electrolyzer. The NaOH was used as an electrolyte which is dissolved in water of 5% by a mass fraction. The test is conducted using a single-cylinder 155cc gasoline engine with sensors and an interface connected to a computer to control loading and record all sensor variables in real-time. Hydrogen produced from the electrolysis reactor is injected through the intake manifold using two injectors, hydrogen injected simultaneously at a specific time with a gasoline-bioethanol fuel. The test was conducted with variations of engine speeds. The emission product of ethanol--H2 (BE10+H2) was an excellent candidate as a new alternative of fuel solution in the future. The engasolinerichment of hydrogen increased the flame speed and generated a stable combustion reaction. The hydrogen enrichment produced CO2 emission due to the unavailability of carbon content in hydrogen fuel. As a result, the C/H ratio is lower than for mixed fuels.


1999 ◽  
Vol 121 (4) ◽  
pp. 756-762 ◽  
Author(s):  
Jionghua Jin ◽  
Jianjun Shi

In this paper, a state space modeling approach is developed for the dimensional control of sheet metal assembly processes. In this study, a 3-2-1 scheme is assumed for the sheet metal assembly. Several key concepts, such as tooling locating error, part accumulative error, and re-orientation error, are defined. The inherent relationships among these error components are developed. Those relationships finally lead to a state space model which describes the variation propagation throughout the assembly process. An observation equation is also developed to represent the relationship between the observation vector (the in-line OCMM measurement information) and the state vector (the part accumulative error). Potential usage of the developed model is discussed in the paper.


2001 ◽  
Author(s):  
Reza Kashani ◽  
Asim S. Mohammad

Abstract Synthesis and analysis of model-based controllers for an acoustic system require the state-space formulation of the system. The use of modal data, i.e. resonant frequencies, model damping ratios, and mode shapes, in constructing state-space model of an aoucstic system is described in this paper. Moreover, a simple, low-order feedback controller for adding damping to and/or cancelling offending noise in an acoustic system is introduced. State-space modeling, as well as the effectiveness of the proposed feedback controller are demonstrated through numerical and experimental, illustrative examples.


2017 ◽  
Vol 13 (4) ◽  
pp. 711-716 ◽  
Author(s):  
Jibril Aminu ◽  
Tahir Ahmad ◽  
Surajo Sulaiman

The complexity of a system of Fuzzy State Space Modeling (FSSM) is the reason that leads to the main objective of this research. A multi-connected system of Fuzzy State Space Model is made up of several components, each of which performs a function. These components are interconnected in some manner and determine how the overall system operates. In this study, we study the concept of graph, network system and network projections which are the requisite knowledge to potential method. Finally, the multi-connected system of FSSM of type A namely feeder, common feeder and greatest common feeder are transformed into potential method using various method of transformation.


MTZ worldwide ◽  
2004 ◽  
Vol 65 (10) ◽  
pp. 12-13
Author(s):  
Dirk Anwender ◽  
Kay Brodesser ◽  
Ivano Morgillo

Sign in / Sign up

Export Citation Format

Share Document