Active Learning Kriging Model Combining With Kernel-Density-Estimation-Based Importance Sampling Method for the Estimation of Low Failure Probability

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Xufeng Yang ◽  
Yongshou Liu ◽  
Caiying Mi ◽  
Xiangjin Wang

Strategies combining active learning Kriging (ALK) model and Monte Carlo simulation (MCS) method can accurately estimate the failure probability of a performance function with a minimal number of training points. That is because training points are close to the limit state surface and the size of approximation region can be minimized. However, the estimation of a rare event with very low failure probability remains an issue, because purely building the ALK model is time-demanding. This paper is intended to address this issue by researching the fusion of ALK model with kernel-density-estimation (KDE)-based importance sampling (IS) method. Two stages are involved in the proposed strategy. First, ALK model built in an approximation region as small as possible is utilized to recognize the most probable failure region(s) (MPFRs) of the performance function. Consequentially, the priori information for IS are obtained with as few training points as possible. In the second stage, the KDE method is utilized to build an instrumental density function for IS and the ALK model is continually updated by treating the important samples as candidate samples. The proposed method is termed as ALK-KDE-IS. The efficiency and accuracy of ALK-KDE-IS are compared with relevant methods by four complicated numerical examples.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wenzhong Shi ◽  
Chengzhuo Tong ◽  
Anshu Zhang ◽  
Bin Wang ◽  
Zhicheng Shi ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s42003-021-01924-6


2021 ◽  
Vol 13 (1) ◽  
pp. 796-806
Author(s):  
Zhen Shuo ◽  
Zhang Jingyu ◽  
Zhang Zhengxiang ◽  
Zhao Jianjun

Abstract Understanding the risk of grassland fire occurrence associated with historical fire point events is critical for implementing effective management of grasslands. This may require a model to convert the fire point records into continuous spatial distribution data. Kernel density estimation (KDE) can be used to represent the spatial distribution of grassland fire occurrences and decrease the influences historical records in point format with inaccurate positions. The bandwidth is the most important parameter because it dominates the amount of variation in the estimation of KDE. In this study, the spatial distribution characteristic of the points was considered to determine the bandwidth of KDE with the Ripley’s K function method. With high, medium, and low concentration scenes of grassland fire points, kernel density surfaces were produced by using the kernel function with four bandwidth parameter selection methods. For acquiring the best maps, the estimated density surfaces were compared by mean integrated squared error methods. The results show that Ripley’s K function method is the best bandwidth selection method for mapping and analyzing the risk of grassland fire occurrence with the dependent or inaccurate point variable, considering the spatial distribution characteristics.


Sign in / Sign up

Export Citation Format

Share Document