Control of Down-Hole Drilling Process Using a Computationally Efficient Dynamic Programming Method

Author(s):  
Chong Ke ◽  
Xingyong Song

The unconventional down-hole resources such as shale oil and gas have gradually become a critical form of energy supply thanks to the recent petroleum technology advancement. Its economically viable and reliable production highly depends on the proper operation and control of the down-hole drilling system. The trend of deeper drilling in a complex environment requires a more effective and reliable control optimization scheme, either for predrilling planning or for online optimal control. Given the nonlinear nature of the drilling system, such an optimal control is not trivial. In this paper, we present a method based on dynamic programming (DP) that can lead to a computationally efficient drilling control optimization. A drilling dynamics model that can enable this method is first constructed, and the DP algorithm is customized so that much improved computational efficiency can be achieved compared with using standard DP. A higher-order dynamics model is then used to validate the effectiveness of the optimized control, and the control robustness is also evaluated by adding perturbations to the model. The results verify that the proposed approach is effective and efficient to solve the down-hole drilling control optimization problem.

Author(s):  
Madhu Vadali ◽  
Yuzhen Xue ◽  
Xingyong Song ◽  
Jason Dykstra

This paper presents a detailed mathematical model of a rotary steerable drilling system (RSS) that adopts hydro-electromechanical devices to generate bending torque in adjusting the toolface (TF). Key requirements of RSS are to adjust the TF promptly to track the TF command, to maintain the TF in presence of the external disturbances, and to do so during the drilling process. Accordingly, a controller with a fast response time and effective disturbance rejection capability is desired for the RSS. The complexity and non-linearities of the RSS creates additional challenges to the controller design. This paper describes a simple and effective controller scheme that is designed based on the analysis of the system’s dynamics model. By decoupling the disturbances, physical state feedback, and non-linearities, the RSS can be controlled by using a simple and effective proportional-integral-derivative (PID) controller with the desired performance. The simulation results show that the proposed controller is effective against the disturbance and the variations of the parameters.


2013 ◽  
Vol 850-851 ◽  
pp. 893-896
Author(s):  
Yu Zhao ◽  
Ji Ye Yang

The time-delay delay phenomenon is a kind of widespread physical and biological phenomenon. The existence of time-delay not only give the stability of system analysis and controller design brings great difficulties but also usually make the systems unstable and even cause the system performance deteriorated. We use the adaptive dynamic iterative algorithm to solve this equation. By using the neural network to achieve the iterative algorithm, get the optimal control law of the systems with time delay. The simulation results show that the adaptive dynamic programming method to solve the optimal control of the nonlinear system is effective.


2010 ◽  
Vol 29-32 ◽  
pp. 2503-2508 ◽  
Author(s):  
Pei Hong Sun ◽  
Lei Tang ◽  
Li Ying Tang

Countering the inventory management problem of manufacturing enterprise, according to the optimal control theory, considering the numbers of products as control variables and the stocks as the state variables, this essay establishes systemic real-time dynamic model, gives the objective function, and makes use of dynamic programming method to solve the optimal control and obtains the optimal inventory, which provides a theoretical foundation for the production and inventory management of manufacturing enterprise.


Author(s):  
S. М. Akhmetov ◽  
M. Diarov ◽  
N. М. Akhmetov ◽  
D. T. Bizhanov ◽  
Zh. K. Zaidemova

Heavy weight drill pipe (HWDP) in wells are hollow, weighty rods with stepwise changing physical properties (for example, stiffness), and each link of the string can deform according to geometrically nonlinear laws. They are the most critical part in the drilling process, transmitting power from the drilling rig to the rock failing tool, and are in hydrodynamic and contact interaction with the borehole walls, and are always curved. This occurs due to the curvature of the well itself, and under the action of its own weight, contact forces, as well as centrifugal forces in the case of rotation of the pipe. In this case, the curvature of the HWDP axis can be significantly influenced by the geometric nonlinearity of the deformation of its pipes. A review of this issue revealed a number of poorly studied problems, which include accounting for both phy- sically and geometrically nonlinear problems, accompanied by various types of complications (loss of stability HDWP, pipe breaks, etc.), as well as other processes in the elements of a dynamic drilling system (DDS). In this paper, based on the use of modern methods for studying dynamic processes in mechanical systems, a method is proposed for studying longitudinal oscillations of a geometrically nonlinear HWDP of its stability under torsion, taking into account the physical nonlinearity in the process of its deformation. The dependences characte- rizing this process are found.


2010 ◽  
Vol 455 ◽  
pp. 98-102 ◽  
Author(s):  
H.B. Zhao ◽  
Y.F. Nan

The near-dry deep hole drilling system was taken as object in this study,and the contrast experiment between the deep hole drilling system and the traditional(wet)deep-hole drilling system,including the cutting force,the tool wear,the surface quality and the chip-break have been done. The results show that the near-dry system drill stability and have better effort in cooling,lubrication,chip removal effective. The tool life and surface quality within the hole are better,at the same time,it can greatly reducing the amount of cutting fluid,the costs and the pollution of the environment. So we can get a conclusion that it is an ideal system in green drilling process.


Sign in / Sign up

Export Citation Format

Share Document