scholarly journals Differential Effects of Isoproterenol on Regional Myocardial Mechanics in Rat Using Three-Dimensional Cine DENSE Cardiovascular Magnetic Resonance

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Xiaoyan Zhang ◽  
Zhan-Qiu Liu ◽  
Dara Singh ◽  
David K. Powell ◽  
Charles S. Chung ◽  
...  

The present study assessed the acute effects of isoproterenol on left ventricular (LV) mechanics in healthy rats with the hypothesis that β-adrenergic stimulation influences the mechanics of different myocardial regions of the LV wall in different ways. To accomplish this, magnetic resonance images were obtained in the LV of healthy rats with or without isoproterenol infusion. The LV contours were divided into basal, midventricular, and apical regions. Additionally, the midventricular myocardium was divided into three transmural layers with each layer partitioned into four segments (i.e., septal, inferior, lateral, and anterior). Peak systolic strains and torsion were quantified for each region. Isoproterenol significantly increased peak systolic radial strain and circumferential-longitudinal (CL) shear strain, as well as ventricular torsion, throughout the basal, midventricle, and apical regions. In the midventricle, isoproterenol significantly increased peak systolic radial strain, and induced significant increases in peak systolic circumferential strain and longitudinal strain in the septum. Isoproterenol consistently increased peak systolic CL shear strain in all midventricular segments. Ventricular torsion was significantly increased in nearly all segments except the inferior subendocardium. The effects of isoproterenol on LV systolic mechanics (i.e., three-dimensional (3D) strains and torsion) in healthy rats depend on the region. This region dependency is also strain component-specific. These results provide insight into the regional response of LV mechanics to β-adrenergic stimulation in rats and could act as a baseline for future studies on subclinical abnormalities associated with the inotropic response in heart disease.

2011 ◽  
Vol 29 (4) ◽  
pp. 516-524 ◽  
Author(s):  
Francesco Maffessanti ◽  
Roberto M. Lang ◽  
Johannes Niel ◽  
Regina Steringer-Mascherbauer ◽  
Enrico G. Caiani ◽  
...  

2001 ◽  
Vol 281 (2) ◽  
pp. H698-H714 ◽  
Author(s):  
Albert J. Sinusas ◽  
Xenophon Papademetris ◽  
R. Todd Constable ◽  
Donald P. Dione ◽  
Martin D. Slade ◽  
...  

A comprehensive three-dimensional (3-D) shape-based approach for quantification of regional myocardial deformations was evaluated in a canine model ( n = 8 dogs) with the use of cine magnetic resonance imaging. The shape of the endocardial and epicardial surfaces was used to track the 3-D trajectories of a dense field of points over the cardiac cycle. The shape-based surface displacements are integrated with a continuum biomechanics model incorporating myofiber architecture to estimate both cardiac- and fiber-specific endocardial and epicardial strains and shears for 24 left ventricular regions. Whereas radial and circumferential end-systolic strains were fairly uniform, there was a significant apex-to-base gradient in longitudinal strain and radial-longitudinal shear. We also observed transmural epicardial-to-endocardial gradients in both cardiac- and fiber-specific strains. The increase in endocardial strain was accompanied by increases in radial-longitudinal shear and radial-fiber shears in the endocardium, supporting previous theories of regional myocardial deformation that predict considerable sliding between myocardial fibers.


2017 ◽  
Vol 20 (1) ◽  
pp. 026 ◽  
Author(s):  
Nan Cheng ◽  
Liuquan Cheng ◽  
Rong Wang ◽  
Lin Zhang ◽  
Changqing Gao

Objective: The aim of this study was to quantify left ventricular torsion by newly applied cardiovascular magnetic resonance feature tracking (CMR-FT), and to evaluate the clinical value of the ventricular torsion as a sensitive indicator of cardiac function by comparison of preoperative and postoperative torsion.Methods: A total of 54 volunteers and 36 patients with previous myocardial infarction (MI) and LV ejection fraction (EF) between 30%-50% were screened preoperatively or postoperatively by MRI. The patients’ short axis views of the whole heart were acquired, and all patients had a scar area >75% in at least one of the anterior or inferior segments. Their apical and basal rotation values were analyzed by feature tracking, and the correlation analysis was performed for the improvement of LV torsion and ejection fraction after CABG. The intra- and inter-observer reliabilities of torsion measured by CMR-FT were assessed.Results: In normal hearts, the apex rotated counterclockwise in the systolic period with the peak rotation as 10.2 ± 4.8°, and the base rotated clockwise as the peak value was 7.0 ± 3.3°. There was a timing hiatus between the apex and base untwisting, during which period the heart recoils and its suction sets the stage for the following rapid filling period. The postoperative torsion and rotation significantly improved compared with preoperative ones. However, the traditional indicator of cardiac function, ejection fraction, didn’t show significant improvement.Conclusion: Left ventricular torsion derived from CMR-FT, which does not require specialized CMR sequences, was sensitive to patients with low ejection fraction whose cardiac function significantly improved after CABG. The rapid acquisition of this measurement has potential for the assessment of cardiac function in clinical practice. 


Author(s):  
Fabian Strodka ◽  
Jana Logoteta ◽  
Roman Schuwerk ◽  
Mona Salehi Ravesh ◽  
Dominik Daniel Gabbert ◽  
...  

AbstractVentricular dysfunction is a well-known complication in single ventricle patients in Fontan circulation. As studies exclusively examining patients with a single left ventricle (SLV) are sparse, we assessed left ventricular (LV) function in SLV patients by using 2D-cardiovascular magnetic resonance (CMR) feature tracking (2D-CMR-FT) and 2D-speckle tracking echocardiography (2D-STE). 54 SLV patients (11.4, 3.1–38.1 years) and 35 age-matched controls (12.3, 6.3–25.8 years) were included. LV global longitudinal, circumferential and radial strain (GLS, GCS, GRS) and strain rate (GLSR, GCSR, GRSR) were measured using 2D-CMR-FT. LV volumes, ejection fraction (LVEF) and mass were determined from short axis images. 2D-STE was applied in patients to measure peak systolic GLS and GLSR. In a subgroup analysis, we compared double inlet left ventricle (DILV) with tricuspid atresia (TA) patients. The population consisted of 19 DILV patients, 24 TA patients and 11 patients with diverse diagnoses. 52 patients were in NYHA class I and 2 patients were in class II. Most SLV patients had a normal systolic function but median LVEF in patients was lower compared to controls (55.6% vs. 61.2%, p = 0.0001). 2D-CMR-FT demonstrated reduced GLS, GCS and GCSR values in patients compared to controls. LVEF correlated with GS values in patients (p < 0.05). There was no significant difference between GLS values from 2D-CMR-FT and 2D-STE in the patient group. LVEF, LV volumes, GS and GSR (from 2D-CMR-FT) were not significantly different between DILV and TA patients. Although most SLV patients had a preserved EF derived by CMR, our results suggest that, LV deformation and function may behave differently in SLV patients compared to healthy subjects.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Chengjie Gao ◽  
Yajie Gao ◽  
Jingyu Hang ◽  
Meng Wei ◽  
Jingbo Li ◽  
...  

Abstract Background A considerable number of non-ischemic dilated cardiomyopathy (NDCM) patients had been found to have normalized left ventricular (LV) size and systolic function with tailored medical treatments. Accordingly, we aimed to evaluate if strain parameters assessed by cardiovascular magnetic resonance (CMR) feature tracking (FT) analysis could predict the NDCM recovery. Methods 79 newly diagnosed NDCM patients who underwent baseline and follow-up CMR scans were enrolled. Recovery was defined as a current normalized LV size and systolic function evaluated by CMR. Results Among 79 patients, 21 (27%) were confirmed recovered at a median follow-up of 36 months. Recovered patients presented with faster heart rates (HR) and larger body surface area (BSA) at baseline (P < 0.05). Compared to unrecovered patients, recovered pateints had a higher LV apical radial strain divided by basal radial strain (RSapi/bas) and a lower standard deviation of time to peak radial strain in 16 segments of the LV (SD16-TTPRS). According to a multivariate logistic regression model, RSapi/bas (P = 0.035) and SD16-TTPRS (P = 0.012) resulted as significant predictors for differentiation of recovered from unrecovered patients. The sensitivity and specificity of RSapi/bas and SD16-TTPRS for predicting recovered conditions were 76%, 67%, and 91%, 59%, with the area under the curve of 0.75 and 0.76, respectively. Further, Kaplan Meier survival analysis showed that patients with RSapi/bas ≥ 0.95% and SD16-FTPRS ≤ 111 ms had the highest recovery rate (65%, P = 0.027). Conclusions RSapi/bas and CMR SD16-TTPRS may be used as non-invasive parameters for predicting LV recovery in NDCM. This finding may be beneficial for subsequent treatments and prognosis of NDCM patients. Registration number: ChiCTR-POC-17012586.


2002 ◽  
Vol 20 (9) ◽  
pp. 649-657 ◽  
Author(s):  
J.C. Fu ◽  
J.W. Chai ◽  
S.T.C. Wong ◽  
J.J. Deng ◽  
J.Y. Yeh

Author(s):  
Joseph Kyu-hyung Park ◽  
Seokwon Park ◽  
Chan Yeong Heo ◽  
Jae Hoon Jeong ◽  
Bola Yun ◽  
...  

Abstract Background Vascularity of the nipple-areolar complex (NAC) is altered after reduction mammoplasty, which increases complications risks after repeat reduction or nipple-sparing mastectomy. Objectives To evaluate angiogenesis of the NAC via serial analysis of breast magnetic resonance images (MRIs). Methods Breast MRIs after reduction mammoplasty were analyzed for 35 patients (39 breasts) using three-dimensional reconstructions of maximal intensity projection images. All veins terminating at the NAC were classified as internal mammary, anterior intercostal, or lateral thoracic in origin. The vein with the largest diameter was considered the dominant vein. Images were classified based on the time since reduction: &lt;6 months, 6-12 months, 12-24 months, &gt;2 years. Results The average number of veins increased over time: 1.17 (&lt;6 months), 1.56 (6–12 months), 1.64 (12–24 months), 1.73 (&gt;2 years). Within 6 months, the pedicle was the only vein. Veins from other sources began to appear at 6–12 months. In most patients, at least two veins were available after 1 year. After 1 year, the internal mammary vein was the most common dominant vein regardless of the pedicle used. Conclusions In the initial 6 months after reduction mammoplasty, the pedicle is the only source of venous drainage; however, additional sources are available after 1 year. The internal thoracic vein was the dominant in most patients. Thus, repeat reduction mammoplasty or nipple-sparing mastectomy should be performed ≥1 year following the initial procedure. After 1 year, the superior or superomedial pedicle may represent the safest option when the previous pedicle is unknown.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Hosakote M Nagaraj ◽  
Thomas S Denney ◽  
Steven G Lloyd ◽  
David Calhoun ◽  
Inmaculada Aban ◽  
...  

Background: Muscle fibers are arranged in a spiral network and are connected by extracellular matrix (ECM). LV torsion is increased in the pressure overloaded heart where there is an increase in ECM. However, torsion and its relation to ECM have not been systematically studied in the volume overloaded heart. Hypothesis: The volume overloaded heart has a decrease in LV torsion due a loss of ECM. Methods: Primary mitral regurgitation (MR) (n=29), resistant hypertension (HTN) (n=77) and normal volunteers (NL) (n±37) were studied. Comprehensive cardiac magnetic resonance imaging (MRI) with tissue tagging was performed and analyzed using three-dimensional data set. Torsion was computed by fitting a B-spline deformation model in prolate-spheroidal coordinates to the tag line data. A subset of MR subjects had LV collagen assessed by picric acid Sirius red from biopsy samples taken at the time of surgery. Results: LV ejection fraction was 65% in MR and 70% in HTN. MR demonstrated eccentric remodeling and HTN demonstrated concentric remodeling. HTN had significantly higher torsion angle and systolic twist compared to NL and MR. This was associated with a simultaneous decrease in longitudinal strain. In contrast, MR patients had similar torsion indices, circumferential and longitudinal strains compared to NL. LV biopsy in MR demonstrated a decrease in interstitial collagen compared to NL. Conclusions: As opposed to the pure volume overloaded heart, LV torsional forces are increased in the pressure overloaded heart. This difference may be related to a rearrangement of the laminar structure due to a differential effect on ECM in the volume overloaded versus the pressure overloaded heart.


2017 ◽  
Vol 81 (4) ◽  
pp. 529-536 ◽  
Author(s):  
Krunoslav Michael Sveric ◽  
Stefan Ulbrich ◽  
Mohamed Rady ◽  
Tobias Ruf ◽  
Heda Kvakan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document