Large Scale Pressurized Water Reactor Passive Containment Cooling System Wind Tunnel Test

2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Huang Jingyu ◽  
Pan Xinxin ◽  
Song Chunjing

The objective of the current work is to shed light on studying the air flow features of the air path which is part of the passive containment cooling system (PCS) in a pressurized water reactor design. A wind tunnel test using a 1:100 scaled model is established to study the characteristic called “wind-neutrality” of the air flow in the air path, which indicates that the environmental wind should not be beneficial or detrimental to the air flow for containment cooling. Test results show that the pressure distribution in the air path is uniform, and wind speeds, wind angles, and surroundings have little effect on air flow uniformity. These investigations show that it is possible to understand air flows in the air path of PCS with a scale wind tunnel test.

Author(s):  
Jeffrey R. Kobelak ◽  
Jun Liao ◽  
Katsuhiro Ohkawa

During the reflood phase of a postulated large break loss-of-coolant accident (LBLOCA), the liquid head in the reactor vessel downcomer provides the driving force to reflood the core. Since the reflood rate is a function of the downcomer inventory, the calculation of the downcomer liquid inventory is critical in simulating the reflood phase of a postulated LBLOCA accident in a pressurized water reactor. Since the reactor coolant system pressure decreases rapidly after the onset of a LBLOCA transient, the walls surrounding the downcomer become superheated for the duration of the transient. The Japan Atomic Energy Research Institute (JAERI) downcomer effective water head test facility was designed to study boiling and steam-water interaction in the reactor vessel downcomer under prototypical reflood conditions. A number of tests were conducted at this facility with varying degrees of wall superheating (among other things) that cover the expected degree of superheating in a pressurized water reactor. The wall superheating achieved at the JAERI facility is greater than that of other large-scale facilities that are typically simulated to validate thermal-hydraulic system codes. WCOBRA/TRAC-TF2 is the thermal-hydraulic system code utilized in the FULL SPECTRUM™ LOCA (FSLOCA™) evaluation model (EM). The ability of the WCOBRA/TRAC-TF2 code to predict phenomena occurring in the reactor vessel downcomer during the reflood phase of a postulated LBLOCA has been previously validated. However, only limited wall superheating was present in the existing validation basis. As such, two experiments conducted at the JAERI downcomer effective water head test facility are simulated to provide additional information on the capability of WCOBRA/TRAC-TF2 to predict the liquid inventory in the reactor vessel downcomer during the reflood phase of a postulated LBLOCA. The code captured all the trends observed in the experimental data for both Run 115 and Run 121. The various collapsed liquid levels tended to be well-predicted or under-predicted by the code after the initial simulated accumulator injection period.


2011 ◽  
Vol 32 (4) ◽  
pp. 67-79
Author(s):  
Tomasz Bury

Thermodynamic consequences of hydrogen combustion within a containment of pressurized water reactor Gaseous hydrogen may be generated in a nuclear reactor system as an effect of the core overheating. This creates a risk of its uncontrolled combustion which may have a destructive consequences, as it could be observed during the Fukushima nuclear power plant accident. Favorable conditions for hydrogen production occur during heavy loss-of-coolant accidents. The author used an own computer code, called HEPCAL, of the lumped parameter type to realize a set of simulations of a large scale loss-of-coolant accidents scenarios within containment of second generation pressurized water reactor. Some simulations resulted in high pressure peaks, seemed to be irrational. A more detailed analysis and comparison with Three Mile Island and Fukushima accidents consequences allowed for withdrawing interesting conclusions.


Author(s):  
Josef Hasslberger ◽  
Peter Katzy ◽  
Thomas Sattelmayer ◽  
Lorenz R. Boeck

For the purpose of nuclear safety analysis, a reactive flow solver has been developed to determine the hazard potential of large-scale hydrogen explosions. Without using empirical transition criteria, the whole combustion process (including DDT) is computed within a single solver framework. In this paper, we present massively parallelized three-dimensional explosion simulations in a full-scale pressurized water reactor of the Konvoi type. Several generic DDT scenarios in globally lean hydrogen-air mixtures are examined to assess the importance of different input parameters. It is demonstrated that the explosion process is highly sensitive to mixture composition, ignition location and thermodynamic initial conditions. Pressure loads on the confining structure show a profoundly dynamic behavior depending on the position in the containment.


1983 ◽  
Vol 63 (2) ◽  
pp. 316-329 ◽  
Author(s):  
Yasuo Motoki ◽  
Mitsuo Naritomi ◽  
Mitsugu Tanaka ◽  
Gunji Nishio ◽  
Kazuichiro Hashimoto ◽  
...  

Author(s):  
Pan Xinxin ◽  
Huang Jingyu ◽  
Song Chunjing

CAP1400 is a large passive pressurized water reactor nuclear power plant, which relies on engineering safety features such as passive containment cooling system (PCS) to remove the decay heat in the containment and mitigate accident consequences. PCS is designed to perform passive containment cooling which is mainly dependent on natural convection inside the containment and inner wall condensation heat transfer, outer containment surface water film coverage and evaporation heat transfer and external air flow path cooling performance, etc. Among them, the key factors that affect the performance of the external air flow path include the flow resistance characteristics of the air flow path and the wind-direction neutrality characteristics. The relevant performance will be the important design input of the accident analysis, which will directly affect the safety of the power plant. During the normal operation of power plant, the PCS air flow path is influenced by the external environment, and its internal flow is very complicated. Designers are often lack of data support, and can’t fully consider the impact of environmental flow. In order to fully study the performance of PCS air flow path, it is necessary to perform PCS integrated scaled wind tunnel test. According to the original design of CAP1400 PCS system, the model scale research is developed and CAP1400 PCS wind tunnel test scaled model is established and the scale is 1:100. The test model includes shield building model and the surrounding plant model, which contain pressure measuring points uniformly distributed in 6 horizontal cross sections of the shield building. The pressure measuring point arrangement does not affect air flow in the air flow path. The following wind tunnel tests are simulated in different wind speed including 15m/s, 20m/s, 10m/s, 25m/s. The air flow pressure, wind velocity at the inlet and outlet of air flow path and the pressure distribution of inner annulus and outer annulus are measured in order to study the air flow pressure drop and wind-direction neutrality characteristics, and the wind tunnel test also considers the different wind direction angle, with and without the surrounding buildings and the effects of different landforms. The test results show that the flow rate of inlet and outlet of air flow path is balanced and the wind velocity at the upwind and central area of the flow path outlet is larger than other area, and a large vortex comes on the leeward side near the wall. The local uneven flow phenomenon exists in the outer annulus of the air flow path, but the wind pressure distribution of inner annulus is not affected by environment wind speed, wind direction angle, landforms and the surrounding buildings. So CAP1400 PCS air flow path has the characteristics of wind direction neutrality, and the natural convection of the air flow path will not be adversely affected by the environment wind.


Author(s):  
Xu Caihong ◽  
Shi Guobao ◽  
Fan Pu

The Advanced Core-cooling Mechanism Experiment (ACME) is conducted to investigate the performance of passive core-cooling system (PXS) for the advanced CAP1400 Pressurized Water Reactor (PWR). The small-break LOCA experiments conducted at ACME integrated test facility are simulated with a SNERDI modified version of RE-LAP5/MOD3 code. Several typical SBLOCA test cases are simulated and one case (2 inch cold leg break) is presented in this paper. And the predicted results are compared with the test data to assess the performance of the modified code. The calculated results agree reasonably well with the test data.


1995 ◽  
Vol 109 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Taisuke Yonomoto ◽  
Yutaka Kukita ◽  
Yoshinari Anoda ◽  
Hideaki Asaka

Sign in / Sign up

Export Citation Format

Share Document