scholarly journals Unsteady Finite Amplitude Convection of Water–Copper Nanoliquid in High-Porosity Enclosures

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
P. G. Siddheshwar ◽  
K. M. Lakshmi

Unicellular Rayleigh–Bénard convection of water–copper nanoliquid confined in a high-porosity enclosure is studied analytically. The modified-Buongiorno–Brinkman two-phase model is used for nanoliquid description to include the effects of Brownian motion, thermophoresis, porous medium friction, and thermophysical properties. Free–free and rigid–rigid boundaries are considered for investigation of onset of convection and heat transport. Boundary effects on onset of convection are shown to be classical in nature. Stability boundaries in the R1*–R2 plane are drawn to specify the regions in which various instabilities appear. Specifically, subcritical instabilities' region of appearance is highlighted. Square, shallow, and tall porous enclosures are considered for study, and it is found that the maximum heat transport occurs in the case of a tall enclosure and minimum in the case of a shallow enclosure. The analysis also reveals that the addition of a dilute concentration of nanoparticles in a liquid-saturated porous enclosure advances onset and thereby enhances the heat transport irrespective of the type of boundaries. The presence of porous medium serves the purpose of heat storage in the system because of its low thermal conductivity.

2002 ◽  
Vol 453 ◽  
pp. 345-369 ◽  
Author(s):  
ULRICH BURR ◽  
ULRICH MÜLLER

This article presents an analytical and experimental study of magnetohydrodynamic Rayleigh–Bénard convection in a large aspect ratio, 20[ratio ]10[ratio ]1, rectangular box. The test fluid is a eutectic sodium potassium Na22K78 alloy with a small Prandtl number of Pr≈0:02. The experimental setup covers Rayleigh numbers in the range 103< Ra<8×104 and Chandrasekhar numbers 0[les ]Q[les ]1.44×106 or Hartmann numbers 0[les ]M[les ]1200, respectively.When a horizontal magnetic field is imposed on a heated liquid metal layer, the electromagnetic forces give rise to a transition of the three-dimensional convective roll pattern into a quasi-two-dimensional flow pattern in such a way that convective rolls become more and more aligned with the magnetic field. A linear stability analysis based on two-dimensional model equations shows that the critical Rayleigh number for the onset of convection of quasi-two-dimensional flow is shifted to significantly higher values due to Hartmann braking at walls perpendicular to the magnetic field. This finding is experimentally confirmed by measured Nusselt numbers. Moreover, the experiments show that the convective heat transport at supercritical conditions is clearly diminished. Adjacent to the onset of convection there is a significant region of stationary convection with significant convective heat transfer before the flow proceeds to time-dependent convection. However, in spite of the Joule dissipation effect there is a certain range of magnetic field intensities where an enhanced heat transfer is observed. Estimates of the local isotropy properties of the flow by a four-element temperature probe demonstrate that the increase in convective heat transport is accompanied by the formation of strong non-isotropic time-dependent flow in the form of large-scale convective rolls aligned with the magnetic field which exhibit a simpler temporal structure compared to ordinary hydrodynamic flow and which are very effective for the convective heat transport.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
P. G. Siddheshwar ◽  
C. Kanchana ◽  
Y. Kakimoto ◽  
A. Nakayama

Rayleigh–Bénard convection in liquids with nanoparticles is studied in the paper considering a two-phase model for nanoliquids with thermophysical properties determined from phenomenological laws and mixture theory. In the absence of nanoparticle-modified thermophysical properties as used in the paper, the problem is essentially binary liquid convection with Soret effect. The base liquids chosen for investigation are water, ethylene glycol, engine oil, and glycerine, and the nanoparticles chosen are copper, copper oxide, silver, alumina, and titania. Using data on these 20 nanoliquids, our theoretical model clearly explains advanced onset of convection in nanoliquids in comparison with that in the base liquid without nanoparticles. The paper sets to rest the tentativeness regarding the boundary condition to be chosen in the study of Rayleigh–Bénard convection in nanoliquids. The effect of thermophoresis is to destabilize the system and so is the effect of other parameters arising due to nanoparticles. However, Brownian motion effect does not have a say on onset of convection. In the case of nonlinear theory, the five-mode Lorenz model is derived under the assumptions of Boussinesq approximation and small-scale convective motions, and using it enhancement of heat transport due to the presence of nanoparticles is clearly explained for steady-state motions. Subcritical motion is shown to be possible in all 20 nanoliquids.


2019 ◽  
Vol 868 ◽  
pp. 1-4 ◽  
Author(s):  
Charles R. Doering

The fundamental challenge to characterize and quantify thermal transport in the strongly nonlinear regime of Rayleigh–Bénard convection – the buoyancy-driven flow of a horizontal layer of fluid heated from below – has perplexed the fluid dynamics community for decades. Rayleigh proposed controlling the temperature of thermally conducting boundaries in order to study the onset of convection, in which case vertical heat transport gauges the system response. Conflicting experimental results for ostensibly similar set-ups have confounded efforts to discriminate between two competing theories for how boundary layers and interior flows interact to determine transport through the convecting layer asymptotically far beyond onset. In a conceptually new approach, Bouillaut, Lepot, Aumaître and Gallet (J. Fluid Mech., vol. 861, 2019, R5) devised a procedure to radiatively heat a portion of the fluid domain bypassing rigid conductive boundaries and allowing for dissociation of thermal and viscous boundary layers. Their experiments reveal a new level of complexity in the problem suggesting that heat transport scaling predictions of both theories may be realized depending on details of the thermal forcing.


Sign in / Sign up

Export Citation Format

Share Document