Optimal Design of an Inerter-Based Dynamic Vibration Absorber Connected to Ground

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Shaoyi Zhou ◽  
Claire Jean-Mistral ◽  
Simon Chesne

Abstract This paper addresses the optimal design of a novel nontraditional inerter-based dynamic vibration absorber (NTIDVA) installed on an undamped primary system of single degree-of-freedom under harmonic and transient excitations. Our NTIDVA is based on the traditional dynamic vibration absorber (TDVA) with the damper replaced by a grounded inerter-based mechanical network. Closed-form expressions of optimal parameters of NTIDVA are derived according to an extended version of fixed point theory developed in the literature and the stability maximization criterion. The transient response of the primary system is optimized when the coupled system becomes defective, namely having three pairs of coalesced conjugate poles, the proof of which is also spelt out in this paper. Moreover, the analogous relationship between NTIDVA and electromagnetic dynamic vibration absorber is highlighted, facilitating the practical implementation of the proposed absorber. Finally, numerical studies suggest that compared with TDVA, NTIDVA can decrease the peak vibration amplitude of the primary system and enlarge the frequency bandwidth of vibration suppression when optimized by the extended fixed point technique, while the stability maximization criterion shows an improved transient response in terms of larger modal damping ratio and accelerated attenuation rate.

2018 ◽  
Vol 56 (5) ◽  
Author(s):  
Nguyen Van Khang

The dynamic vibration absorber (DVA) has been widely applied in various technical fields. This paper presents a  procedure for designing the optimal parameters of  a dynamic vibration absorber attached to a damped primary system. The values of the optimal parameters of the DVA obtained by the Taguchi’s method are compared by the results obtained by other methods. The comparison results show the advantages of the procedure presented in this study


2021 ◽  
pp. 107754632110382
Author(s):  
Peng Sui ◽  
Yongjun Shen ◽  
Shaopu Yang ◽  
Junfeng Wang

In the field of dynamics and control, some typical vibration devices, including grounded stiffness, inerter and amplifying mechanism, have good vibration isolation and reduction effects, especially in dynamic vibration absorber (DVA). However, most of the current research studies only focus on the performance of a single device on the system, and those DVAs are gradually becoming difficult to meet the growth of performance demand for vibration control. On the basis of Voigt dynamic vibration absorber, a novel dynamic vibration absorber model based on the combined structure of grounded stiffness, inerter, and amplifying mechanism is presented, and the analytical solution of the optimal design formula is derived. First, the motion differential equation of the system is established, and the normalized amplitude amplification factor of the displacement is calculated. It is found that the system has three fixed points unrelated to the damping ratio. The optimal frequency ratio is obtained based on the fixed-point theory. In order to ensure the stability of the system, it is found that inappropriate inerter coefficient will cause the system instable when screening optimal grounded stiffness ratio. Accordingly, the best working range of inerter is determined. Finally, optimal grounded stiffness ratio and approximate optimal damping ratio are also obtained. The influence of inerter coefficient and magnification ratio on the response of the primary system is analyzed. The correctness of the derived analytical solution is verified by numerical simulation. Compared with other dynamic vibration absorbers, it is verified that presented model has superior vibration absorption performance and provides a theoretical basis for the design of a new type of dynamic vibration absorbers.


2010 ◽  
Vol 34 (1) ◽  
pp. 119-135 ◽  
Author(s):  
Kefu Liu ◽  
Gianmarc Coppola

This study focuses on the optimum design of the damped dynamic vibration absorber (DVA) for damped primary systems. Different from the conventional way, the DVA damper is connected between the absorber mass and the ground. Two numerical approaches are employed. The first approach solves a set of nonlinear equations established by the Chebyshev’s equioscillation theorem. The second approach minimizes a compound objective subject to a set of the constraints. First the two methods are applied to classical systems and the results are compared with those from the analytical solutions. Then the modified Chebyshev’s equioscillation theorem method is applied to find the optimum damped DVAs for the damped primary system. Various results are obtained and analyzed.


2019 ◽  
Vol 23 (1) ◽  
pp. 9-16
Author(s):  
Dheepakram Laxmimala Barathwaaj ◽  
Sujay Yegateela ◽  
Vivek Vardhan ◽  
Vignesh Suresh ◽  
Devarajan Kaliyannan

Abstract In this paper, closed-form optimal parameters of inerter-based variant dynamic vibration absorber (variant IDVA) coupled to a primary system subjected to base excitation are derived based on classical fixed-points theory. The proposed variant IDVA is obtained by adding an inerter alone parallel to the absorber damper in the variant dynamic vibration absorber (variant DVA). A new set of optimum frequency and damping ratio of the absorber is derived, thereby resulting in lower maximum amplitude magnification factor than the inerter-based traditional dynamic vibration absorber (traditional IDVA). Under the optimum tuning condition of the absorbers, it is proved both analytically and numerically that the proposed variant IDVA provides a larger suppression of resonant vibration amplitude of the primary system subjected to base excitation. It is demonstrated that adding an inerter alone to the variant DVA provides 19% improvement in vibration suppression than traditional IDVA when the mass ratio is less than 0.2 and the effective frequency bandwidth of the proposed IDVA is wider than the traditional IDVA. The effect of inertance and mass ratio on the amplitude magnification factor of traditional and variant IDVA is also studied.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401881957 ◽  
Author(s):  
Qi Xu ◽  
Junkai Niu ◽  
Hongliang Yao ◽  
Lichao Zhao ◽  
Bangchun Wen

The dynamic vibration absorbers have been applied to attenuate the critical or unbalanced vibration but may create the fluid-induced vibration instability in the rotor/seal system. The major purpose of this study is devoted to the effects of the dynamic vibration absorber on the nonlinear dynamic behavior and stability of the fluid-induced vibration in the rotor/seal system. The dynamic vibration absorber is attached on the shaft in the perpendicular directions. The model of the rotor/seal-dynamic vibration absorber system is established as the modified Jeffcott rotor system, and Muszynska nonlinear seal force is applied. The numerical method is used for the dynamic behavior analysis. The effects of the natural frequency and damping ratio of the dynamic vibration absorber on the dynamic behavior are discussed. The stability of the rotor/seal-dynamic vibration absorber system is judged by the eigenvalue theory. The variations of the instability threshold with the parameters of the dynamic vibration absorber are obtained. The results show that the instability threshold and instability vibration frequency are changed by the dynamic vibration absorber. The parameters of the dynamic vibration absorber must be selected carefully to avoid reducing the instability threshold and causing the instability vibration to occur in advance when the dynamic vibration absorber is applied to attenuate the critical or unbalanced vibration of the rotor/seal system.


Author(s):  
Kefu Liu ◽  
Jie Liu ◽  
Liang Liao

An electromagnetic damper is developed to construct a tunable damped dynamic vibration absorber. The developed vibration absorber can suppress vibration of a structure subjected to a harmonic force with variable frequency. The damping of the vibration absorber can be adjusted on-line to cope with variation in the exciting frequency. The electromagnetic damper is composed of an electromagnet and a copper plate attached to the absorber mass. The relationship between the damping ratio and the damper current is discussed analytically. An experiment is conducted to determine the damping coefficients. A clamped-clamped beam is used as a primary system. The damper is connected between the absorber mass and the ground. This setup is referred to as skyhook dynamic vibration absorber in this study. The performance of a skyhook dynamic vibration absorber is compared with that of a groundhook dynamic vibration absorber where a damper is connected between the primary mass and the absorber mass. Two algorithms are proposed to tune the damper on-line. The first algorithm is FFT-based while the second one is rms-based. The control algorithms are tested against three frequency varying scenarios: multi-step change, linear change, and single-step change plus impact disturbance. Merits of each of the control algorithms are demonstrated.


Author(s):  
Yan Hao ◽  
Yongjun Shen ◽  
Xianghong Li ◽  
Jun Wang ◽  
Shaopu Yang

The Maxwell model with viscoelastic material and multiple negative stiffness springs is introduced into dynamic vibration absorber system, and all the system parameters are optimized in detail. The analytical solution of the primary system is exhibited according to the established motion differential equation. The dimensionless system parameters, including the optimum natural frequency ratio, the optimum damping ratio and the first optimum negative stiffness ratio of dynamic vibration absorber, are obtained based on H∞ optimization principle and the fixed-point theory. Considering system stability, the other optimum negative stiffness ratio is also determined. Furthermore, by the comparisons of the presented dynamic vibration absorber with other traditional dynamic vibration absorbers, it is found that the dynamic vibration absorber in this paper has better vibration reduction effect in the case of both harmonic and random excitation.


Sign in / Sign up

Export Citation Format

Share Document