Evaluation of Energy and Power Flow in a Nonlinear Energy Sink Attached to a Linear Primary Oscillator

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Christian E. Silva ◽  
Amin Maghareh ◽  
Hongcheng Tao ◽  
Shirley J. Dyke ◽  
James Gibert

Abstract The objective of this study is to develop a novel methodology to assess the energy flow between a nonlinear energy sink (NES) and the primary system it is attached to in terms of energy orientation, which is directly related to the sign of the power present on the primary system. To extend the work done in previous studies, which have focused primarily on the analytical treatment, characterization, and performance evaluation of NES as passive nonlinear dampers for structures under different types of excitations, this study incorporates a methodology for determining whether energy is entering or leaving a primary oscillator when interacting with an NES, by means of considering the power flow of the primary oscillator. Several current measures for evaluating the effectiveness of the NES at extracting and dissipating energy irreversibly are considered through numerical simulations of systems with different damping cases of the NES. Each case provides a different dissipation scenario in the combined system, which is subjected to different types of base excitation signals such as impulse and seismic records. The methodology is further validated experimentally using a two degrees-of-freedom system with an NES attached to the second mass. Comparisons of the modeled responses versus the measured responses are provided for several physical damping realization scenarios in the NES.

Author(s):  
Majid Kani ◽  
Siamak E Khadem ◽  
Mohammad H Pashaei ◽  
Morteza Dardel

In this work, design and performance analysis of a nonlinear energy sink, attached to a beam (the primary system) with different support conditions, will be investigated. Here, the effects of both beam properties and external shock excitation are studied. For this purpose, equations of motion are derived by the Lagrange method. Then, parameters of the nonlinear energy sink are optimized by both sensitivity analysis and particle swarm optimization method. The results show that, increasing the first natural frequency of the primary system, on which an external impulse is imposed, will postpone the nonlinear energy sink activation. Also, increasing the amplitude of the shock excitation will tend to decrease the optimum value of the nonlinear energy sink stiffness. Using the particle swarm optimization method to obtain the optimized parameters of the nonlinear energy sink and its interaction with the primary system, which is a continuous one, is a new research area presented in this work.


2020 ◽  
Vol 26 (23-24) ◽  
pp. 2261-2273 ◽  
Author(s):  
George C Tsiatas ◽  
Dimitra A Karatzia

The reliability of the hysteretic nonlinear energy sink in shock mitigation is investigated herein. The hysteretic nonlinear energy sink is a passive vibration control device which is coupled to a primary linear oscillator. Apart from its small mass and a nonlinear elastic spring of the Duffing oscillator, it also comprises a purely hysteretic and a linear elastic spring of potentially negative stiffness. The Bouc–Wen model is used to describe the force produced by both the purely hysteretic and linear elastic springs. The hysteretic nonlinear energy sink protects the primary system through the energy pumping mechanism which transfers energy from the primary system and dissipates it in the hysteretic nonlinear energy sink. Three nonlinear equations of motion describe the resulting two-degree-of-freedom system response. The parameters of the system to be considered as uncertain are the natural frequency of the primary system and the hysteretic nonlinear energy sink linear elastic spring, which follow a normal distribution. A reliability analysis is then performed to evaluate the robustness of the coupled system in the presence of uncertainty. Specifically, the reliability index is calculated based on first passage probabilities of distinct dissipation energy level crossings using the Monte Carlo method. Several examples are examined considering various levels of initial input energy, and useful conclusions are drawn concerning the influence of uncertainty in the system robustness.


2013 ◽  
Vol 698 ◽  
pp. 89-98 ◽  
Author(s):  
Etienne Gourc ◽  
Sébastien Seguy ◽  
Guilhem Michon ◽  
Alain Berlioz

This paper presents the interest of an original absorber of vibration in order to reduce chatter vibration in turning process. The device is composed of a linear oscillator corresponding to a flexible cutting tool subject to chatter strongly coupled to a Nonlinear Energy Sink (NES), with purely cubic stiffness. The novelty of this work is the use of a nonlinear cutting law, more accurate for modeling the cutting process. The delayed equations of motion are analyzed using a combination of the method of multiple scales and harmonic balance. Different types of responses regimes are revealed such as periodic response and also Strongly Modulated Response (SMR). Analytic results are then compared with numerical simulations. Finally, the potential of the NES is demonstrated to control chatter in turning process.


2021 ◽  
Author(s):  
Ivan Yegorov (Egorov) ◽  
Austin Uden ◽  
Daniil Yurchenko

Abstract This paper studies a targeted energy transfer (TET) mechanism for a two-degree-of-freedom (TDOF) model in free vibration. The model comprises a primary linear system and a secondary system in the form of an energy sink which can be nonlinear. The free vibrations are considered subject to an impulsive excitation exerted on the primary system, leading to a nonzero initial velocity. The goal is to obtain the spring parameters in the nonlinear energy sink (NES) so as to maximize an energy dissipation measure (EDM) representing the percentage of impulsive energy that is absorbed and dissipated in the NES. A global optimization algorithm is used for this purpose. The optimal performance is assessed for the purely linear, linear-cubic, and purely cubic configurations of the spring connecting the primary and secondary systems. The corresponding results are compared with each other. The optimization process is performed for the EDM averaged over given ranges of the initial impulse and natural frequency in the primary system. It is shown that the type of the optimal configuration can vary depending on these ranges.


2011 ◽  
Vol 79 (1) ◽  
Author(s):  
O. V. Gendelman ◽  
G. Sigalov ◽  
L. I. Manevitch ◽  
M. Mane ◽  
A. F. Vakakis ◽  
...  

The paper introduces a novel type of nonlinear energy sink, designed as a simple rotating eccentric mass, which can rotate with any frequency and; therefore, inertially couple and resonate with any mode of the primary system. We report on theoretical and experimental investigations of targeted energy transfer in this system.


2021 ◽  
Author(s):  
Eliot Motato ◽  
Fabio G. Guerrero

Abstract Nonlinear Energy Sinks (NESs) have been proposed for passively reducing the amplitude of vibrations in different types of structures. The main advantage of NES over traditional Tuned Mass Dampers (TMDs) lies in its capability to redistribute the vibrating energy inside a primary structure, what effectively reduces the amplitude of the structure oscillations over a wide range of frequencies. However, the performance of an NES can be substantially affected even by small variations on input energy as in the case of buildings under seismic ground excitation. In this work it is shown that the NES energy sensibility can be significantly reduced by properly selecting the NES damping coefficient. A three stories shear building model subject to seismic ground excitation is used to numerically study the effect that NES damping has on its vibration reduction performance.


Author(s):  
Dongyang Chen ◽  
Chaojie Gu ◽  
Ruihua Zhang ◽  
Jiaying Liu ◽  
Dian Guo ◽  
...  

Abstract Vortex-induced vibration (VIV) is a common fluid-structure interaction (FSI) phenomenon in the field of wind engineering and marine engineering. The large-amplitude VIV has a marked impact on the slender structure in fluids, at times even destructive. To study how the VIV can be controlled, the dynamics of a rigid cylinder attached to a rotational nonlinear energy sink (R-NES) is investigated in this paper. This is done using a two degrees of freedom (2-DOF) Van der Pol wake oscillator model adapted to consider a coupled vibration in cross-flow and streamwise directions. The governing equation of R-NES are coupled to the wake oscillator model, hence a flow-cylinder-NES coupled system is established. While exploring the dynamics of the cylinders with different mass ratios under the action of R-NES, it was found that the R-NES deliver better performance in suppressing the VIV of a cylinder with high mass ratios than that of a low mass ratios cylinder. The effect of the distinct parameters of R-NES on VIV response was also systematically investigated in this study. The results indicate that higher mass parameter and rotation radius can lead to improved performance, while the effect of the damping parameter is complex, and appears to be linked to the mass ratio of the column structure.


Sign in / Sign up

Export Citation Format

Share Document