Laser Wavelengths Suitable for Generating Ultrasonic Waves in Resin-Coated Carbon Fiber Composites

Author(s):  
Osamu Saito ◽  
Enhi Sen ◽  
Yoji Okabe ◽  
Nobuhiro Higuchi ◽  
Hideki Ishizuki ◽  
...  

Abstract For the non-destructive inspection of carbon fiber-reinforced plastic (CFRP), lasers can be used to generate ultrasonic waves. It is important to optimize the wavelength of the laser to ensure the intense excitation of a usable propagating mode. Real CFRP components used in the construction of airplanes and automobiles are often coated with several types of resin to protect against weathering. These resin layers change the excitation of the ultrasonic waves. Thus, the optimum laser wavelength may be changed by the coating resin. In this paper, we investigated the excitation of ultrasonic waves in a resin-coated CFRP plate using different laser wavelengths. We conducted experiments to convert the laser wavelength using periodically poled LiNbO3 (PPLN) devices. By injecting mid-infrared laser to a coated sample, we observed excited ultrasonic waves using a laser Doppler vibrometer. We found that transparent resins significantly increase the amplitude of the first-arriving longitudinal wave. Furthermore, when the laser was strongly absorbed in the surface layer, the excitation of longitudinal waves was suppressed. These results were clarified by a one-dimensional model of the thermal generation of ultrasonic waves. We concluded that a laser passing through a resin layer is a viable candidate for the effective inspection of coated CFRP by laser ultrasonic waves.

2019 ◽  
Vol 9 (11) ◽  
pp. 2281 ◽  
Author(s):  
Suma Ayyagari ◽  
Marwan Al-Haik

Carbon fiber reinforced plastic composites (CFRPs) possess superior elastic mechanical properties. However, CFRPs lack sufficient viscoelastic performance, such as damping and creep resistance. In an effort to improve these properties, in this study, hybrid multiscale composites with various combinations of zinc oxide nanorods (ZnO) and carbon nanotubes (CNTs) were deposited at the interface of carbon fiber laminae. The viscoelastic properties of the corresponding composites were characterized via dynamic mechanical analysis (DMA) during both temperature and frequency sweeps. The creep activation energy for each composite configuration was also calculated. The DMA temperature sweep analysis reported that the composite incorporating both ZnO and CNTs exhibited the highest improvements in all viscoelastic properties. This composite also attained better creep resistance, evident by the highest activation energy. The DMA frequency sweep analysis revealed that composites incorporating a single nanofiller improves the viscoelastic properties more than the combined nanofiller composite. Despite these improvements in the viscoelastic properties, the non-uniform dispersion and agglomerations of the nanofillers affected some of the elastic properties negatively, such as the storage modulus.


Sign in / Sign up

Export Citation Format

Share Document