scholarly journals Improvement of the RELAP5-3D Condensation Heat Transfer Model in the Presence of Noncondensable Gases

2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Nolan Anderson ◽  
Piyush Sabharwall

Abstract Condensation of steam on the primary side of steam generator in a pressurized water reactor is one of the means of removing decay heat during accident scenarios such as a small break loss of coolant accident. With the presence of noncondensable gases, the rate of removal of decay heat reduces, affecting the ability of the nuclear plant to remove heat in accident scenarios. Therefore, correct prediction of heat removal capability is very significant to predict the plant behavior. In this study, an analytical model is compared with a numerical solution with the use of experiments performed at University of California, Berkeley and at MIT. A modified correlation is proposed and compared to experimental observation for various noncondensable gases.

Author(s):  
Nolan A. Anderson ◽  
George L. Mesina

Condensation of steam on the primary side of a steam generator in a pressurized water reactor (PWR) is one means of removing decay heat during some accident scenarios, including small break loss of coolant accident (SBLOCA). However, when noncondensable gasses mix with steam, it impairs condensation. To correctly predict plant behavior, nuclear power plant (NPP) safety analysis codes such as RELAP5-3D must model the effect of condensation in the presence of noncondensables properly. A potential error in the RELAP5-3D code was reported in the condensation model in the presence of noncondensables by the University of Wisconsin[1]. The report indicated that the calculated condensation heat flux was under-predicted due to the modeling of the mass transfer in the gas mixture. The original documentation describing the implementation of the model was reviewed and compared with alternative formulations. An alternative that uses saturation vapor density at temperature of total pressure instead of the saturation vapor density at vapor partial pressure for calculating vapor mass flux was implemented. Comparison of the alternative method with the original against experimental data for several test cases showed improvement for most test cases.


Author(s):  
Yang Liu ◽  
Haijun Jia ◽  
Li Weihua

Passive decay heat removal (PDHR) system is important to the safety of integral pressurized water reactor (IPWR). In small break LOCA sequence, the depressurization of the reactor pressure vessel (RPV) is achieved by the PDHR that remove the decay heat by condensing steam directly through the SGs inside the RPV at high pressure. The non-condensable gases in the RPV significantly weaken the heat transfer capability of PDHR. This paper focus on the non-condensable gas effects in passive decay heat removal system at high pressure. A series of experiments are conducted in the Institute of Nuclear and New Energy Technology test facility with various heating power and non-condensable gas volume ratio. The results are significant to the optimizing design of the PDHR and the safety operation of the IPWR.


2021 ◽  
Vol 134 ◽  
pp. 103648
Author(s):  
Katarzyna Skolik ◽  
Chris Allison ◽  
Judith Hohorst ◽  
Mateusz Malicki ◽  
Marina Perez-Ferragut ◽  
...  

Author(s):  
S. P. Saraswat ◽  
P. Munshi ◽  
A. Khanna ◽  
C. Allison

The initial design of ITER incorporated the use of carbon fiber composites in high heat flux regions and tungsten was used for low heat flux regions. The current design includes tungsten for both these regions. The present work includes thermal hydraulic modeling and analysis of ex-vessel loss of coolant accident (LOCA) for the divertor (DIV) cooling system. The purpose of this study is to show that the new concept of full tungsten divertor is able to withstand in the accident scenarios. The code used in this study is RELAP/SCADAPSIM/MOD 4.0. A parametric study is also carried out with different in-vessel break sizes and ex-vessel break locations. The analysis discusses a number of safety concerns that may result from the accident scenarios. These concerns include vacuum vessel (VV) pressurization, divertor temperature profile, passive decay heat removal capability of structure, and pressurization of tokamak cooling water system. The results show that the pressures and temperatures are kept below design limits prescribed by ITER organization.


Author(s):  
Amir Ali ◽  
Edward D. Blandford

The United States Nuclear Regulatory Commission (NRC) initiated a generic safety issue (GSI-191) assessing debris accumulation and resultant chemical effects on pressurized water reactor (PWR) sump performance. GSI-191 has been investigated using reduced-scale separate-effects testing and integral-effects testing facilities. These experiments focused on developing a procedure to generate prototypical debris beds that provide stable and reproducible conventional head loss (CHL). These beds also have the ability to filter out chemical precipitates resulting in chemical head loss. The newly developed procedure presented in this paper is used to generate debris beds with different particulate to fiber ratios (η). Results from this experimental investigation show that the prepared beds can provide reproducible CHL for different η in a single and multivertical loops facility within ±7% under the same flow conditions. The measured CHL values are consistent with the predicted values using the NUREG-6224 correlation. Also, the results showed that the prepared debris beds following the proposed procedure are capable of detecting standard aluminum and calcium precipitates, and the head loss increase (chemical head loss) was measured and reported in this paper.


Author(s):  
Woon-Shing Yeung ◽  
Ramu K. Sundaram

The accumulator in a Pressurized Water Reactor (PWR) is generally pressurized with inert nitrogen cover gas, and the accumulator water will be saturated with nitrogen. Nitrogen released due to system depressurization during a Loss-of-Coolant Accident (LOCA) transient, consists of the nitrogen that is in the gas phase as well as nitrogen coming out of the liquid from a dissolved state. The effect of nitrogen release from the accumulator on the accident sequence is generally not explicitly addressed in typical LOCA analyses. This paper presents an analytical nitrogen release model and its incorporation into the RELAP5/MOD3 computer code. The model predicts the amount of nitrogen release as a function of concentration difference between the actual and equilibrium conditions, and can track its subsequent transport through the downstream reactor coolant system in a LOCA transient. The model is compared to data from discharge tests with a refrigerant type fluid, pressurized with nitrogen. The results demonstrate that the model is able to calculate the release of the dissolved nitrogen as designed. The modified computer code has been applied to analyze the discharge from a typical PWR accumulator. The results are compared to those obtained without the nitrogen release model. The effect of nitrogen release on major system parameters, including accumulator level, accumulator flow rate, and accumulator pressure, is discussed.


Sign in / Sign up

Export Citation Format

Share Document