scholarly journals Dynamic Crack Propagation and Its Interaction With Micro-Cracks in an Impact Problem

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Adem Candaş ◽  
Erkan Oterkus ◽  
Cevat Erdem İmrak

Abstract The dynamic fracture behavior of brittle materials that contain micro-level cracks should be examined when material subjected to impact loading. We investigated the effect of micro-cracks on the propagation of macro-cracks that initiate from notch tips in the Kalthoff–Winkler experiment, a classical impact problem. To define predefined micro-cracks in three-dimensional space, we proposed a two-dimensional micro-crack plane definition in the bond-based peridynamics (PD) that is a non-local form of classical continuum theory. Randomly distributed micro-cracks with different number densities in a constant area and number in expending area models were examined to monitor the toughening of the material. The velocities of macro-crack propagation and the time required for completing fractures were considered in several predefined micro-cracks cases. It has been observed that toughening mechanism is only initiated by exceeding a certain number of micro-cracks; therefore, there is a positive correlation between the density of predefined micro-cracks and macro-crack propagation rate and, also, toughening mechanism.


Author(s):  
JEONG WOO SHIN ◽  
YOUNG-SHIN LEE

The dynamic propagation of a crack in a functionally graded piezoelectric material (FGPM) interface layer between two dissimilar piezoelectric layers under anti-plane shear is analyzed using the integral transform approaches. The properties of the FGPM layers vary continuously along the thickness. FGPM layer and the two homogeneous piezoelectric layers are connected weak-discontinuously. A constant velocity Yoffe-type moving crack is considered. Numerical values on the dynamic energy release rate (DERR) are presented for the FGPM. Followings are helpful to increase of the resistance of the crack propagation of the FGPM interface layer: (a) certain direction and magnitude of the electric loading; (b) increase of the thickness of the FGPM interface layer; (c) increase of the thickness of the homogeneous piezoelectric layer which has larger material properties than those of the crack plane in the FGPM interface layer. The DERR always increases with the increase of crack moving velocity and the gradient of the material properties.



2017 ◽  
Vol 92 ◽  
pp. 178-184 ◽  
Author(s):  
Y. Takashima ◽  
T. Kawabata ◽  
S. Yamada ◽  
F. Minami


2012 ◽  
Vol 36 (5) ◽  
pp. 651-657 ◽  
Author(s):  
Jun Lei ◽  
Yue-Sheng Wang ◽  
Yifeng Huang ◽  
Qingsheng Yang ◽  
Chuanzeng Zhang


1998 ◽  
Vol 539 ◽  
Author(s):  
T. Cramer ◽  
A. Wanner ◽  
P. Gumbsch

AbstractTensile tests on notched plates of single-crystalline silicon were carried out at high overloads. Cracks were forced to propagate on {110} planes in a <110> direction. The dynamics of the fracture process was measured using the potential drop technique and correlated with the fracture surface morphology. Crack propagation velocity did not exceed a terminal velocity of v = 3800 m/s, which corresponds to 83%7 of the Rayleigh wave velocity vR. Specimens fractured at low stresses exhibited crystallographic cleavage whereas a transition from mirror-like smooth regions to rougher hackle zones was observed in case of the specimens fractured at high stresses. Inspection of the mirror zone at high magnification revealed a deviation of the {110} plane onto {111} crystallographic facets.





PAMM ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 1090801-1090802
Author(s):  
A.-M. Sändig ◽  
A. Lalegname ◽  
S. Nicaise


1993 ◽  
Vol 60 (1) ◽  
pp. 223-225
Author(s):  
S. J. Fariborz


Author(s):  
B. Prabel ◽  
S. Marie ◽  
A. Combescure

In the frame of analysis of the pressure thermal shock in a PWR RVP and the associated R&D activities, some developments are performed at CEA on the dynamic brittle propagation and crack arrest. This paper presents a PhD work on the modeling of the dynamic brittle crack growth. For the analyses, an important experimental work is performed on different geometries using a French RPV ferritic steel: Compact Tension specimens with different thickness, isothermal rings under compression with different positions of the initial defect to study a mixed mode configuration, and a ring submitted to thermal shock. The first part of this paper details the test conditions and main results. To propose an accurate interpretation of the crack growth, a viscous-elastic-plastic dynamic model is used. The strain rate influence is taken into account based on Cowper-Symond’s law (characterization was made from Split Hopkinson Pressure Bar tests). To model the crack propagation in the Finite Element calculation, eXtended Finite Element Method (X-FEM) is used. The implementation of these specific elements in the CEA F.E. software CAST3M is described in the second part of this paper. This numerical technique avoids re-meshing, because the crack progress is directly incorporated in the degrees of freedom of the elements crossed by the crack. The last part of this paper compares the F.E. predictions to the experimental measurements using different criteria. In particular, we focused on a RKR (Ritchie-Knott-Rice) like criterion using a critical principal stress in the front of the crack tip during the dynamic crack extension. Critical stress is found to depend on crack speed, or equivalently on strain rate. Good results are reported concerning predictive simulations.



2018 ◽  
Vol 54 (4) ◽  
pp. 2779-2786 ◽  
Author(s):  
Ning Zhang ◽  
Yu Hong ◽  
Youping Chen


Sign in / Sign up

Export Citation Format

Share Document