Mode Strategy for Engine Efficiency Enhancement by Using a Magneto-Rheological Variable Valve Train

2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Yaojung Shiao ◽  
Premkumar Gadde ◽  
Mahendra Babu Kantipudi

Abstract Variable valve timing (VVT) and variable valve lift (VVL) are two promising methods for improving gasoline engine performance. VVL improves part-load performance, and VVT reduces low-speed fuel consumption. Automobile industries and researchers have developed several mechanical, hydraulic, and electronic devices to implement these variable valve functions in engines. In this study, a control strategy is developed for a new compact and low-energy-consumption magneto-rheological valve train (MRVT) to effectively accomplish the variable valve functions and achieve superior engine performance. A non-throttle single-cylinder spark-ignition (SI) engine dynamic model is established to simulate the engine performance by using the flexibility of this new valve train. A six-mode strategy using VVT and VVL is proposed under different engine running conditions of speed and load. Dynamic simulations were conducted for investigating the six-mode strategy based engine performance. The results indicate that the combination of VVT and VVL in the corresponding engine mode can effectively give about 15–20% improvement in the brake fuel efficiency during low and medium speeds. Moreover, by using VVL, about 10–14% improvement in brake specific fuel consumption can be achieved at part-load conditions. According to this computational investigation, the overall engine efficiency and performance can be improved significantly by using a controllable magneto-rheological valve and strategically changing the engine VVL and VVT.

2015 ◽  
Vol 77 (8) ◽  
Author(s):  
S. F. Zainal Abidin ◽  
M. F. Muhamad Said ◽  
Z. Abdul Latiff ◽  
I. Zahari ◽  
M. Said

There are many technologies that being developed to increase the efficiency of internal combustion engines as well as reducing their fuel consumption.  In this paper, the main area of focus is on cylinder deactivation (CDA) technology. CDA is mostly being applied on multi cylinders engines. CDA has the advantage to improve fuel consumption by reducing pumping losses at part load engine conditions. Here, the application of CDA on 1.6L four cylinders gasoline engine is studied. One-dimensional (1D) engine modeling work is performed to investigate the effect of intake valve strategy on engine performance with CDA. 1D engine model is constructed based on the 1.6L actual engine geometries. The model is simulated at various engine speeds at full load conditions. The simulated results show that the constructed model is well correlated to measured data. This correlated model is then used to investigate the CDA application at part load conditions. Also, the effects on the in-cylinder combustion as well as pumping losses are presented. The study shows that the effect of intake valve strategy is very significant on engine performance. Pumping losses is found to be reduced, thus improve fuel consumption and engine efficiency.


2016 ◽  
Vol 40 (5) ◽  
pp. 749-760 ◽  
Author(s):  
Yaojung Shiao ◽  
Wen-Hsin Cheng

Cylinder valve with variable timing and variable lift is a potential technology to improve engine performance. This research studied cylinder dynamics of a spark-ignition (SI) engine equipped with a new full variable valve system (VVS) based on an innovated magneto-rheological (MR) technology. An MR valve block was combined with a conventional inlet valve in this MR VVS. The study obtained many patterns of valve opening/closing by controlling current to the MR VVS, which controlled the MR fluid flowing through magnetic plate block. Magnetic simulations were performed for the new MR VVS to investigate the relationships among MR valve displacement, valve lift, and valve timing. Simulation results showed that the MR VVS provided high degrees of freedom of valve timing and lift for gasoline engine to produce different torque modes and high engine efficiency. The abilities of this MR VVS to become essential technique of high-efficiency engine were confirmed in the results.


2011 ◽  
Vol 317-319 ◽  
pp. 1999-2006
Author(s):  
Yu Wan ◽  
Ai Min Du ◽  
Da Shao ◽  
Guo Qiang Li

According to the boost mathematical model verified by experiments, the valve train of traditional gasoline engine is optimized and improved to achieve extended expansion cycle. The simulation results of extended expansion gasoline engine shows that the extended expansion gasoline engine has a better economic performance, compared to traditional gasoline engines. The average brake special fuel consumption (BSFC) can reduce 22.78 g / kW•h by LIVC, but the negative impacts of extended expansion gasoline engine restrict the potential of extended expansion gasoline engine. This paper analyzes the extended expansion gasoline engine performance under the influence of LIVC, discusses the way to further improve extended expansion gasoline engine performance.


2016 ◽  
Vol 819 ◽  
pp. 459-465
Author(s):  
Mohd Farid Muhamad Said ◽  
Zulkarnain Abdul Latiff ◽  
Shaiful Fadzil Zainal Abidin ◽  
Izzarief Zahari

There are many technologies that being developed to increase the efficiency of internal combustion engines as well as reducing their fuel consumption. In this paper, the main research area is focus on cylinder deactivation (CDA) technology. CDA mostly being applied on multi cylinders engines. CDA has the advantage in improving fuel consumption by reducing pumping losses at part load engine conditions. Here, the application of CDA on 1.6L four cylinders gasoline engine was studied. One-dimensional (1D) engine modeling is performed to investigate the effect of intake valve strategy on engine performance with CDA. 1D engine model is constructed according to the 1.6L actual engine geometries. The model is simulated at various engine speeds at full load conditions. The simulated results show that the constructed model is well correlated to measured data. This correlated model used to investigate the CDA application at part load conditions. Also, the effects on the in-cylinder combustion as well as pumping losses are presented. The study shows that the effect of intake valve strategy is very significant on engine performance. Pumping losses is found to be reduced, thus improving fuel consumption and engine efficiency.


2013 ◽  
Vol 284-287 ◽  
pp. 1811-1815 ◽  
Author(s):  
Ly Vinh Dat ◽  
Yao Jung Shiao ◽  
Chin Hau Huang

Some previous studies have demonstrated that variable valve timing can effectively enhance engine performance, as well as significantly reduce fuel consumption and emission for SI engines. Use of electromagnetic valve train (EMV) in an engine allows valve timings to be variably controlled at different operating conditions. By this way, an EMV engine is superior to an engine with conventional camshaft-based valve train in improving engine efficiency. In this paper, a novel EMV, which uses permanent and electromagnet together, has been proposed. Improvements in structure, actuating method and optimal parameters for this EMV have brought many advantages about low actuating power, easy actuation and fast response, etc. The results show that this EMV achieves 15% volume reduction and 20% holding force enhancement by special armature design. With the aids of permanent magnet and valve releasing strategies, this novel EMV only needs small EMV actuating power compared with conventional EMV.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110671
Author(s):  
Wei Duan ◽  
Zhaoming Huang ◽  
Hong Chen ◽  
Ping Tang ◽  
Li Wang ◽  
...  

Pre-chamber jet ignition is a promising way to improve fuel consumption of gasoline engine. A small volume passive pre-chamber was tested at a 1.5L turbocharged GDI engine. Combustion and emission characteristics of passive pre-chamber at low-speed WOT and part load were studied. Besides, the combustion stability of the passive pre-chamber at idle operation has also been studied. The results show that at 1500 r/min WOT, compared with the traditional spark ignition, the combustion phase of pre-chamber is advanced by 7.1°CA, the effective fuel consumption is reduced by 24 g/kW h, and the maximum pressure rise rate is increased by 0.09 MPa/°CA. The knock tendency can be relieved by pre-chamber ignition. At part load of 2000 r/min, pre-chamber ignition can enhance the combustion process and improve the combustion stability. The fuel consumption of pre-chamber ignition increases slightly at low load, but decreases significantly at high load. Compared with the traditional spark ignition, the NOx emissions of pre-chamber increase significantly, with a maximum increase of about 15%; the HC emissions decrease, and the highest decrease is about 36%. But there is no significant difference in CO emissions between pre-chamber ignition and spark plug ignition. The intake valve opening timing has a significant influence on the pre-chamber combustion stability at idle operation. With the delay of the pre-chamber intake valve opening timing, the CoV is reduced and can be kept within the CoV limit.


Author(s):  
Jan Zelenka ◽  
Claudio Hoff ◽  
Andreas Wimmer ◽  
Roland Berger ◽  
Josef Thalhauser

The present paper describes the investigations made using the electro-hydraulic intake valve timing system VCM® on a large bore gas engine. The first section explains what challenges have to be faced when developing concepts for present and future applications of large bore gas engines. Following an introduction to the VCM® system, an outline is presented of expected opportunities for using variable intake valve timing in combination with modern turbocharging concepts. The second section describes 0D/1D engine cycle simulations that were carried out to assess the influence of variable valve timing on the intake side compared to a fixed intake valve profile, which is the current standard for large bore gas engines. As a result, first predictions can be made about the gain in engine efficiency achieved with different operating strategies. In order to assess the performance potentials of the variable valve train, extensive experimental investigations were carried out on a single cylinder research engine based on GE’s Type 6 gas engine. The investigations consisted of varying engine parameters including varying the geometric compression ratio as well as the engine boundary conditions. It will be shown how intake valve timing can be used to optimize engine efficiency by improving gas exchange. Furthermore, variable intake valve timing affects the overall system behavior, e.g. distances to the engine’s operating limits. Special attention was paid to analyzing combustion itself, which is necessary due to the strong influence that intake valve timing has on the thermodynamic states of the cylinder charge.


Sign in / Sign up

Export Citation Format

Share Document