Enhancement of Flow Boiling at Very High Initial Surface Temperature by Using Various Additives

Author(s):  
B. Swain ◽  
A. R. Pati ◽  
Soumya Sanjeeb Mohapatra ◽  
Ajit Behera

Abstract For the simultaneous attainment of enhancement and uniformity in temperature distribution in case of quenching performed in transition and nucleate boiling regimes, the heat treatment is performed by adopting thin coolant flow boiling methodology which depicts high replacement rate of vapour and low coolant consumption rate in comparison with the other cooling methodology such as jet and spray cooling.Furthermore, the simultaneous flow over the entire plate reduces the intensity of non-uniformity in cooling. The analysis of experimental results in case of thin film flow boiling clearly indicates significant improvement in initial heat flux (IHF) and critical heat flux (CHF) in comparison with low mass flux jet and spray coolings. Comparative study also ensures that better enhancement and uniformity in cooling are achieved in the current case in comparison with low mass flux spray and jet coolings. Furthermore, the calculation indicates very low coolant consumption characteristic in comparison with the others. The abovementioned parameters (CHF and IHF) alter due to the change in surface tension, viscosity, specific heat and thermal conductivity of the coolant and therefore, the role of above-mentioned coolant properties in case of thin film boiling is monitored. For this,various additives such as Sodium Dodecyl Sulphate (SDS), Polyethylene Glycol (PEG), Polyoxyethylene 20 Sorbitan Monolaurate (Tween 20) and Ethanol were used. In the present work, the analysis discloses that for the better Nusselt number the optimum Reynolds number is 1953 and Ohensorge number and Prandtl number are 0.0032 and 5.85, respectively.

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
YanFeng Fan ◽  
Ibrahim Hassan

Flow boiling heat transfer in a horizontal microtube with inlet restriction (orifice) under uniform heating condition is experimentally investigated using FC-72 as working fluid. A stainless steel microtube with an inner diameter of 889 μm is selected as main microtube. Two microtubes with smaller diameters are assembled at the inlet of main microtube to achieve the restriction ratios of 50% and 20%. The experimental measurement is carried out at mass fluxes ranging from 160 to 870 kg/m2·s, heat fluxes varying from 6 to 170 kW/m2, inlet temperatures of 23 and 35 °C, and saturation pressures of 10 and 45 kPa. The effects of the orifices on two-phase pressure drop, critical heat flux (CHF), and flow boiling heat transfer coefficient are studied. The results show that the pressure drop caused by the orifice takes a considerable portion in the total pressure drop at low mass fluxes. This ratio decreases as the vapor quality or mass flux increases. The difference of normal critical heat flux in the microtubes with different orifice sizes is negligible. In the aspect of flow boiling heat transfer, the orifice is able to enhance the heat transfer at low mass flux and high saturation pressure, which indicates the contribution of orifice in the nucleate boiling dominated regime. However, the effect of orifice on flow boiling heat transfer is negligible in the forced convective boiling dominated regime.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5972
Author(s):  
Yu Xu ◽  
Zihao Yan ◽  
Ling Li

To protect the environment, a new low-GWP refrigerant R1234ze(E) was created to substitute R134a. However, its flow boiling performances have not received sufficient attention so far, which hinders its popularization to some extent. In view of this, an experimental investigation was carried out in a 1.88 mm horizontal circular minichannel. The saturation pressures were maintained at 0.6 and 0.7 MPa, accompanied by mass flux within 540–870 kg/m2 s and heat flux within 25–65 kW/m2. For nucleate boiling, a larger heat flux brings about a larger heat transfer coefficient (HTC), while for convective boiling, the mass flux and vapor quality appear to take the lead role. The threshold vapor quality of different heat transfer mechanisms is around 0.4. Additionally, larger saturation pressure results in large HTC. As for the frictional pressure drop (FPD), it is positively influenced by mass flux and vapor quality, while negatively affected by saturation pressure, and the influence of heat flux is negligible. Furthermore, with the measured data, several existing correlations are compared. The results indicate that the correlations of Saitoh et al. (2007) and Müller-Steinhagen and Heck (1986) perform best on flow boiling HTC and FPD with mean absolute deviations of 5.4% and 10.9%.


Author(s):  
K. H. Bang ◽  
W. H. Choo

The past work on flow boiling heat transfer in minichannels ranging one to three millimeters of hydraulic diameter has indicated that the local heat transfer coefficients are largely independent of mass flux and vapor quality, but mainly a function of wall heat flux. The present work is a revisit of flow boiling in minichannels by conducting experiment using 1.67 mm inner diameter tubes of three different materials; aluminum, brass, and copper, to investigate an effect of the tube inner surface conditions with the focus on an effect on nucleate boiling. Tests were conducted for R-22, a fixed mass flux of 600 kg/m2s, 5∼30 kW/m2 of wall heat flux, 0.0∼0.9 of local vapor quality. The present experimental data confirmed that the flow boiling heat transfer coefficient in a minichannel varies only by heat flux, independent of mass flux and vapor quality. The effect of tube material was found small for the tubes used in the present work. The present data were well predicted by the correlation proposed by Tran et al. (1996).


Author(s):  
Ge Ping Wu ◽  
Sui Zheng Qiu ◽  
Guang Hui Su ◽  
Dou Nan Jia

An experimental research on the dryout point of flow boiling in narrow annuli is conducted under low mass flux with 1.5mm and 1.0mm gap, respectively. Distilled water is used as work fluid, the range of pressure is from 2.0 to 4.0MPa and that of mass flux is 26.0∼69.0 kg/(m2 · s). The relation of CHF and critical qualities with mass flux and pressure are revealed. It is found that the critical qualities decrease with the mass flux and increase with the inlet qualities in externally heated annuli. Under the same conditions critical qualities in outer tube are always larger than that in inner tube. Кутателадзе’s correlations is cited and modified to predict the location of dryout and proved to be not a proper one. Considering in detail the effects of the geometry of annuli and heat flux on dryout, an empirical correction is finally developed to predict dryout point in narrow annuli under low mass flux condition which has a good agreement with experimental data.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Wei Li ◽  
Zengchao Chen ◽  
Junye Li ◽  
Kan Zhou ◽  
Zhaozan Feng

Abstract An experimental investigation of subcooled flow boiling in a high-aspect-ratio, one-sided heating, silicon-based rectangular microchannel was conducted utilizing de-ionized water as the working fluid. The microchannel was 5.01 mm wide and 0.52 mm high, having a hydraulic diameter of 0.94 mm and an aspect ratio (AR) of 10. The heat flux, mass flux, and inlet fluid subcooling were in the ranges of 0–30 W/cm2, 200–500 kg/m2 s, and 5–20 °C, respectively, while the orientations were vertical and horizontal. Parametric study on heat transfer characteristics including the onset of nucleate boiling (ONB), heat transfer coefficient (HTC), and critical heat flux (CHF) was carried out combined with flow visualization. Significant appearance of ONB without boiling hysteresis was observed in the boiling curve, accompanied with bubble nucleation. Nucleate boiling occurred first near the exit, where the HTC increased more sharply, while easier bubble nucleation was found near the sides. Unique time-dependent flow pattern consisting of isolated bubbly flow, elongated bubbly flow, partial dry-out, and rewetting process was observed. More nucleation sites were activated at higher heat flux, while higher initial heat flux and wall superheat for ONB as well as higher CHF value were obtained at higher mass flux and inlet subcooling. Compared to the vertical channel, higher wall temperature and pressure drop with larger oscillation amplitudes were found for the horizontal counterpart, where the merged bubbles agglomerated in the heating section, resulting in earlier dry-out which deteriorated heat transfer.


Author(s):  
Saptarshi Basu ◽  
Sidy Ndao ◽  
Gregory J. Michna ◽  
Yoav Peles ◽  
Michael K. Jensen

An experimental study of two-phase heat transfer coefficients was carried out using R134a in uniformly heated horizontal circular microtubes with diameters of 0.50 mm and 1.60 mm. The effects of mass flux, heat flux, saturation pressure, and vapor quality on heat transfer coefficients were studied. The flow parameters investigated were as follows: exit pressures of 490, 670, 890, and 1160 kPa; mass fluxes of 300–1500 kg/m2s; heat fluxes of 0–350 kW/m2; inlet subcooling of 5, 20, and 40 °C; and exit qualities of 0 to 1.0. The parametric trends presented in the study are consistent with published literature. Heat transfer coefficients increased with increasing heat flux and saturation pressure while they were independent of variations in mass flux. Vapor quality had a negligible influence on heat transfer coefficients. For the conditions studied, the trends indicated that the dominant heat transfer mechanism was nucleate boiling. The experimental data was compared to three microchannel correlations — the Lazarek-Black, the Kandlikar, and the Tran Correlations. None of the correlations predicted the experimental data very well, although they all predicted the correct trend within limits of experimental error.


2002 ◽  
Author(s):  
M. E. D. Urso ◽  
V.V. Wadekar ◽  
Geoffrey F. Hewitt
Keyword(s):  

1999 ◽  
Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Manabu Mochizuki

Abstract The effect of solid particle introduction on subcooled-forced flow boiling heat transfer and a critical heat flux was examined experimentally. In the experiment, glass beads of 0.6 mm diameter were mixed in subcooled water. Experiments were conducted in a range of the subcooling of 40 K, a velocity of 0.17–6.7 m/s, a volumetric particle ratio of 0–17%. When particles were introduced, the growth of a superheated liquid layer near a heat trasnsfer surface seemed to be suppressed and the onset of nucleate boiling was delayed. The particles promoted the condensation of bubbles on the heat transfer surface, which shifted the initiation of a net vapor generation to a high heat flux region. Boiling heat trasnfer was augmented by the particle introduction. The suppression of the growth of the superheated liquid layer and the promotion of bubble condensation and dissipation by the particles seemed to contribute that heat transfer augmentation. The wall superheat at the critical heat flux was elevated by the particle introduction and the critical heat flux itself was also enhanced. However, the degree of the critical heat flux improvement was not drastic.


Sign in / Sign up

Export Citation Format

Share Document