Evaluation of Length Scales and Meshing Requirements for Resolving Two-Phase Flow Regime Transitions Using the Level Set Method

Author(s):  
Matt Zimmer ◽  
Igor A Bolotnov

Abstract New criteria for fully resolving two-phase flow regime transitions using direct numerical simulation with the level set method for interface capturing are proposed. A series of flows chosen to capture small scale interface phenomena are simulated at different grid refinements. These cases include droplet deformation and breakup in a simple shear field, the thin film around a Taylor bubble, and the rise of a bubble towards a free surface. These cases cover the major small scale phenomena observed in two-phase flows: internal recirculation, interface curvature, interface snapping, flow of liquid in thin films, and drainage/snapping of thin films. The results from these simulations and their associated grid studies were used to develop new meshing requirements for simulation of two-phase flow using interface capturing methods, in particular the level set method. When applicable, the code used in this work, PHASTA, was compared to experiments in order to contribute to the ongoing validation process of the code. Results show that when the solver meets these criteria, with the exception of resolving the nanometer scale liquid film between coalescing bubbles, the code is capable of accurately simulating interface topology changes.

2014 ◽  
Vol 100 ◽  
pp. 138-154 ◽  
Author(s):  
Lanhao Zhao ◽  
Jia Mao ◽  
Xin Bai ◽  
Xiaoqing Liu ◽  
Tongchun Li ◽  
...  

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yunfeng Dai ◽  
Zhifang Zhou ◽  
Jin Lin ◽  
Jiangbo Han

To describe accurately the flow characteristic of fracture scale displacements of immiscible fluids, an incompressible two-phase (crude oil and water) flow model incorporating interfacial forces and nonzero contact angles is developed. The roughness of the two-dimensional synthetic rough-walled fractures is controlled with different fractal dimension parameters. Described by the Navier–Stokes equations, the moving interface between crude oil and water is tracked using level set method. The method accounts for differences in densities and viscosities of crude oil and water and includes the effect of interfacial force. The wettability of the rough fracture wall is taken into account by defining the contact angle and slip length. The curve of the invasion pressure-water volume fraction is generated by modeling two-phase flow during a sudden drainage. The volume fraction of water restricted in the rough-walled fracture is calculated by integrating the water volume and dividing by the total cavity volume of the fracture while the two-phase flow is quasistatic. The effect of invasion pressure of crude oil, roughness of fracture wall, and wettability of the wall on two-phase flow in rough-walled fracture is evaluated.


PAMM ◽  
2004 ◽  
Vol 4 (1) ◽  
pp. 506-507 ◽  
Author(s):  
Daniel Gaudlitz ◽  
Nikolaus A. Adams

Sign in / Sign up

Export Citation Format

Share Document