scholarly journals Reprogrammable kinematic branches in tessellated origami structures

2021 ◽  
pp. 1-22
Author(s):  
Phanisri P. Pratapa ◽  
Ke Liu ◽  
Siva P. Vasudevan ◽  
Glaucio H. Paulino

Abstract We analyze the folding kinematics of a recently proposed origami-based tessellated structure called the Morph pattern, using thin, rigid panel assumptions. We discuss the geometry of the Morph unit cell that can exist in two characteristic modes differing in the mountain/valley assignment of a degree-four vertex and explain how a single tessellation of the Morph structure can undergo morphing through rigid origami kinematics resulting in multiple hybrid states. We describe the kinematics of the tessellated Morph pattern through multiple branches, each path leading to different sets of hybrid states. We study the kinematics of the tessellated structure through local and global Poisson's ratios and derive an analytical condition for which the global ratio switches between negative and positive values. We show that the interplay between the local and global kinematics results in folding deformations in which the hybrid states are either locked in their current modes or are transformable to other modes of the kinematic branches, leading to a reprogrammable morphing behavior of the system. Finally, using a bar-and-hinge model-based numerical framework, we simulate the nonlinear folding behavior of the hybrid systems and verify the deformation characteristics that are predicted analytically.

Author(s):  
Phanisri P. Pratapa ◽  
Ke Liu ◽  
Glaucio H. Paulino

Abstract A new degree-four vertex origami, called the Morph pattern, has been recently proposed by the authors (Pratapa, Liu, Paulino, Phy. Rev. Lett. 2019), which exhibits interesting properties such as extreme tunability of Poisson’s ratio from negative infinity to positive infinity, and an ability to transform into hybrid states through rigid origami kinematics. We look at the geometry of the Morph unit cell that can exist in two characteristic modes differing in the mountain/valley assignment of the degree-four vertex and then assemble the unit cells to form complex tessellations that are inter-transformable and exhibit contrasting properties. We present alternative and detailed descriptions to (i) understand how the Morph pattern can smoothly transform across all its configuration states, (ii) characterize the configuration space of the Morph pattern with distinguishing paths for different sets of hybrid states, and (iii) derive the condition for Poisson’s ratio switching and explain the mode-locking phenomenon in the Morph pattern when subjected to in-plane deformation as a result of the inter-play between local and global kinematics.


Author(s):  
Junhyun Kim ◽  
Dongheok Shin ◽  
Do-Sik Yoo ◽  
Kyoungsik Kim

We report here structures, constructed with regular polygonal prisms, that exhibit negative Poisson’s ratios. In particular, we show how we can construct such a structure with regular n -gonal prism-shaped unit cells that are again built with regular n -gonal component prisms. First, we show that the only three possible values for n are 3, 4 and 6 and then discuss how we construct the unit cell again with regular n -gonal component prisms. Then, we derive Poisson’s ratio formula for each of the three structures and show, by analysis and numerical verification, that the structures possess negative Poisson’s ratio under certain geometric conditions.


2021 ◽  
Author(s):  
Xikui Ma ◽  
Jian Liu ◽  
Yingcai Fan ◽  
Weifeng Li ◽  
Jifan Hu ◽  
...  

Two-dimensional (2D) auxetic materials with exceptional negative Poisson’s ratios (NPR) are drawing increasing interest due to the potentials in medicine, fasteners, tougher composites and many other applications. Improving the auxetic...


Author(s):  
Aaron M. Swedberg ◽  
Shawn P. Reese ◽  
Steve A. Maas ◽  
Benjamin J. Ellis ◽  
Jeffrey A. Weiss

Ligament volumetric behavior controls fluid and thus nutrient movement as well as the mechanical response of the tissue to applied loads. The reported Poisson’s ratios for tendon and ligament subjected to tensile deformation loading along the fiber direction are large, ranging from 0.8 ± 0.3 in rat tail tendon fascicles [1] to 2.98 ± 2.59 in bovine flexor tendon [2]. These Poisson’s ratios are indicative of volume loss and thus fluid exudation [3,4]. We have developed micromechanical finite element models that can reproduce both the characteristic nonlinear stress-strain behavior and large, strain-dependent Poisson’s ratios seen in tendons and ligaments [5], but these models are computationally expensive and unfeasible for large scale, whole joint models. The objectives of this research were to develop an anisotropic, continuum based constitutive model for ligaments and tendons that can describe strain-dependent Poisson’s ratios much larger than the isotropic limit of 0.5. Further, we sought to demonstrate the ability of the model to describe experimental data, and to show that the model can be combined with biphasic theory to describe the rate- and time-dependent behavior of ligament and tendon.


2010 ◽  
Vol 97 (6) ◽  
pp. 061909 ◽  
Author(s):  
Yin Ji Ma ◽  
Xue Feng Yao ◽  
Quan Shui Zheng ◽  
Ya Jun Yin ◽  
Dong Jie Jiang ◽  
...  

2015 ◽  
Vol 19 (4) ◽  
pp. 537-555 ◽  
Author(s):  
Abudushalamu Aili ◽  
Matthieu Vandamme ◽  
Jean-Michel Torrenti ◽  
Benoit Masson

Author(s):  
Larry D. Peel ◽  
Madhuri Lingala

Laminates that exhibit high and negative Poisson’s ratios can be used as solid-state actuators, passive and active vibration dampers, and for morphing aircraft structures. Recently, fiber-reinforced elastomer (FRE) laminates have been fabricated that exhibit extreme (high and negative) Poisson’s ratios [1]. The current research explores twisted fiber bundle elastomeric laminates (both single and double helix) which are being investigated using experimentation, linear and non-linear finite element analysis (FEA). Twisted fiber bundles can be made from carbon fibers, fiberglass, etc, but for simplicity the current work uses twisted cotton string. It is observed that uniaxial fiber-reinforced elastomer laminates, where the fibers are twisted as shown in Figure 1, exhibit stress stiffening. Negative Poisson’s ratios may be produced if the fiber bundles have a double helical path as simulated by a series of laminated tubes. Future auxetic FRE laminates may be developed that do experience extreme shear.


2018 ◽  
Vol 10 (21) ◽  
pp. 18029-18035 ◽  
Author(s):  
Shanquan Chen ◽  
Changxin Guan ◽  
Shanming Ke ◽  
Xierong Zeng ◽  
Chuanwei Huang ◽  
...  

1996 ◽  
Vol 86 (6) ◽  
pp. 1704-1713 ◽  
Author(s):  
R. D. Catchings ◽  
W. H. K. Lee

Abstract The 17 January 1994, Northridge, California, earthquake produced strong ground shaking at the Cedar Hills Nursery (referred to here as the Tarzana site) within the city of Tarzana, California, approximately 6 km from the epicenter of the mainshock. Although the Tarzana site is on a hill and is a rock site, accelerations of approximately 1.78 g horizontally and 1.2 g vertically at the Tarzana site are among the highest ever instrumentally recorded for an earthquake. To investigate possible site effects at the Tarzana site, we used explosive-source seismic refraction data to determine the shallow (<70 m) P-and S-wave velocity structure. Our seismic velocity models for the Tarzana site indicate that the local velocity structure may have contributed significantly to the observed shaking. P-wave velocities range from 0.9 to 1.65 km/sec, and S-wave velocities range from 0.20 and 0.6 km/sec for the upper 70 m. We also found evidence for a local S-wave low-velocity zone (LVZ) beneath the top of the hill. The LVZ underlies a CDMG strong-motion recording site at depths between 25 and 60 m below ground surface (BGS). Our velocity model is consistent with the near-surface (<30 m) P- and S-wave velocities and Poisson's ratios measured in a nearby (<30 m) borehole. High Poisson's ratios (0.477 to 0.494) and S-wave attenuation within the LVZ suggest that the LVZ may be composed of highly saturated shales of the Modelo Formation. Because the lateral dimensions of the LVZ approximately correspond to the areas of strongest shaking, we suggest that the highly saturated zone may have contributed to localized strong shaking. Rock sites are generally considered to be ideal locations for site response in urban areas; however, localized, highly saturated rock sites may be a hazard in urban areas that requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document