Assessment of Human Reliability Under the Conditions of Uncertainty: SPAR-H Methodology Interpreted in Terms of Interval-Valued Probabilities

Author(s):  
Victor G. Krymsky ◽  
Farit M. Akhmedzhanov

Abstract The well-known standardized plant analysis risk-human reliability (SPAR-H) methodology is widely used for analysis of human reliability in complex technological systems. It allows assessing the human error probability taking into account eight important groups of performance shaping factors. Application of this methodology to practical problems traditionally involves assumptions which are difficult to verify under the conditions of uncertainty. In particular, it introduces only two possible values of the nominal human error probabilities (for diagnosis and for actions) which do not cover the whole spectrum of the tasks within operator's activity. In addition, although the traditional methodology considers the probabilities of human errors as the random variables, it operates only on a single predefined type of distribution for these variables and does not deal with the real situations in which the type of distribution remains uncertain. The paper proposes modification to the classical approach to enable more adequate modeling of real situations with the lack of available information. The authors suggest usage of the interval-valued probability technique and of the expert judgment on the maximum probability density for actual probabilities of human errors. Such methodology allows obtaining generic results that are valid for the entire set of possible distributions (not only for one of them). The modified methodology gives possibility to derive final assessments of human reliability in interval form indicating “the best case” and “the worst case.” A few numerical examples illustrate the main stages of the suggested procedure.

2011 ◽  
Vol 97-98 ◽  
pp. 825-830 ◽  
Author(s):  
Yong Tao Xi ◽  
Chong Guo

Safety is the eternal theme in shipping industry. Research shows that human error is the main reason of maritime accidents. Therefore, it is very necessary to research marine human errors, to discuss the contexts which caused human errors and how the contexts effect human behavior. Based on the detailed investigation of human errors in collision avoidance behavior which is the most key mission in navigation and the Performance Shaping Factors (PSFs), human reliability of mariners in collision avoidance was analyzed by using the integration of APJE and SLIM. Result shows that this combined method is effective and can be used for the research of maritime human reliability.


Author(s):  
Oladokun Sulaiman Olanrewaju

The traditional approach to the study of human factors in the maritime field involves the analysis of accidents without considering human factor reliability analysis. The main approaches being used to analyze human errors are statistical approach and probability theory approach. Another suitable approach to the study of human factors in the maritime industry is the quasi-experimental field study where variations in performance (for example attention) can be observed as a function of natural variations in performance shaping factors. This chapter analyzes result of modelling for human error and human reliability emanating from the use of technology on board ship navigation in coastal water areas by using qualitative and quantitative tools. Accident reports from marine department are used as empirical material for quantitative analysis. The literature on safety is based on common themes of accidents, the influence of human error resulting from technology usage design, accident reports from MAIB, and interventions information are used for qualitative assessment. Human reliability assessment involves analysis of accidents in waterways emanating from human-technology factors. The chapter reports enhancement requirement of the methodological issues with previous research study, monitoring, and deduces recommendations for technology modification of the human factors necessary to improve maritime safety performance. The result presented can contribute to rule making and safety management leading to the development of guidelines and standards for human reliability risk management for ships navigating within inland and coastal waters.


Author(s):  
Caroline Morais ◽  
Raphael Moura ◽  
Michael Beer ◽  
Edoardo Patelli

Abstract Risk analyses require proper consideration and quantification of the interaction between humans, organization, and technology in high-hazard industries. Quantitative human reliability analysis approaches require the estimation of human error probabilities (HEPs), often obtained from human performance data on different tasks in specific contexts (also known as performance shaping factors (PSFs)). Data on human errors are often collected from simulated scenarios, near-misses report systems, and experts with operational knowledge. However, these techniques usually miss the realistic context where human errors occur. The present research proposes a realistic and innovative approach for estimating HEPs using data from major accident investigation reports. The approach is based on Bayesian Networks used to model the relationship between performance shaping factors and human errors. The proposed methodology allows minimizing the expert judgment of HEPs, by using a strategy that is able to accommodate the possibility of having no information to represent some conditional dependencies within some variables. Therefore, the approach increases the transparency about the uncertainties of the human error probability estimations. The approach also allows identifying the most influential performance shaping factors, supporting assessors to recommend improvements or extra controls in risk assessments. Formal verification and validation processes are also presented.


1988 ◽  
Vol 32 (15) ◽  
pp. 954-957
Author(s):  
Bernhard Zimolong ◽  
Barbara Stolte

An experiment was conducted to derive empirically human error probabilities from a task performed under 12 different conditions. The task was to control a simulated flexible manufacturing scenario (FMS) under three Performance Shaping Factors (PSF): Incentive, workload and event frequency of breakdowns. Six experts with background in human factors assess the relative contribution of each PSF in affecting the likelihood of failure with the multi attribute decomposition technique. The conversion of the assessment values to probabilities was achieved by the use of an empirically derived calibration equation. Results indicate a poor match of empirical HEPs and their estimates and increase the doubts that subjective estimation is a solution to the missing data problem in reliability measurement.


2021 ◽  
Vol 11 (2) ◽  
pp. 749
Author(s):  
Yaniel Torres ◽  
Sylvie Nadeau ◽  
Kurt Landau

Manual assembly operations are sensitive to human errors that can diminish the quality of final products. The paper shows an application of human reliability analysis in a realistic manufacturing context to identify where and why manual assembly errors occur. The techniques SHERPA and HEART were used to perform the analysis of human reliability. Three critical tasks were selected for analysis based on quality records: (1) installation of three types of brackets using fasteners, (2) fixation of a data cable to the assembly structure using cushioned loop clamps and (3) installation of cap covers to protect inlets. The identified error modes with SHERPA were: 36 action errors, nine selection errors, eight information retrieval errors and six checking errors. According to HEART, the highest human error probabilities were associated with assembly parts sensitive to geometry-related errors (brackets and cushioned loop clamps). The study showed that perceptually engaging assembly instructions seem to offer the highest potential for error reduction and performance improvement. Other identified areas of action were the improvement of the inspection process and workers’ provision with better tracking and better feedback. Implementation of assembly guidance systems could potentially benefit worker’s performance and decrease assembly errors.


2017 ◽  
Vol 7 (2) ◽  
Author(s):  
Evica Stojiljković ◽  
Bojan Bijelić ◽  
Marko Cvetković

Human reliability assessment is becoming increasingly important in risk assessment in all industrial systems. All methods for human reliability assessment are used to estimate human error probabilities, which is a measure of human reliability. Human error assessment is certainly a challenge fo r all the experts involved in risk assessment today. In Serbia, this issue has not received proper attention yet. Therefore, this paper presents the case study which confirmed that the usage of Absolute Probability Judgement for proper human reliability assessment. This approach was used in a case study of the Electric Power Company in Serbia (hereinafter EPCS) for the purpose of the analysis accident of a repair intervention on a 10/0.4 kV steel lattice tower “Nova Kolonija” (jurisdiction of EPCS, Veliki Trnovac, ED “Jugoistok”, Nis, Serbia). The case study performed at the EPCS has confirmed that the conventional APJ approach is not only highly applicable for quantification of human errors, but also comprehensive and simple to use in risk assessment of complex systems. Key words: Absolute Probability Judgement, Human Reliability Assessment, Accident, Case Study


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254861
Author(s):  
Yaju Wu ◽  
Kaili Xu ◽  
Ruojun Wang ◽  
Xiaohu Xu

Human errors are considered to be the main causation factors of high-temperature molten metal accidents in metallurgical enterprises. The complex working environment of high- temperature molten metal in metallurgical enterprises has an important influence on the reliability of human behavior. A review of current human reliability techniques confirms that there is a lack of quantitative analysis of human errors in high-temperature molten metal operating environments. In this paper, a model was proposed to support the human reliability analysis of high-temperature molten metal operation in the metallurgy industry based on cognitive reliability and error analysis method (CREAM), fuzzy logic theory, and Bayesian network (BN). The comprehensive rules of common performance conditions in conventional CREAM approach were provided to evaluate various conditions for high-temperature molten metal operation in the metallurgy industry. This study adopted fuzzy CREAM to consider the uncertainties and used the BN to determine the control mode and calculate human error probability (HEP). The HEP for workers involved in high-temperature melting in steelmaking production process was calculated in a case with 13 operators being engaged in different high-temperature molten metal operations. The human error probability of two operators with different control modes was compared with the calculation result of basic CREAM, and the result showed that the method proposed in this paper is validated. This paper quantified point values of human error probability in high-temperature molten metal operation for the first time, which can be used as input in the risk evaluation of metallurgical industry.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Danilo Taverna Martins Pereira de Abreu ◽  
Marcos Coelho Maturana ◽  
Enrique Andrés López Droguett ◽  
Marcelo Ramos Martins

Abstract During a ship life cycle, one of the most critical phases in terms of safety refers to harbor maneuvers, which take place in restricted and congested waters, leading to higher collision and grounding risks in comparison to open sea navigation. In this scenario, a single accident may stop the harbor's traffic as well as incur in patrimonial damage, environmental pollution, human casualties, and reputation losses. In order to support the vessel's captain during the maneuver, local experienced maritime pilots stay on board coordinating the ship navigation while in restricted waters. Aiming to assess the main factors contributing to human errors in pilot-assisted harbor ship maneuvers, this work proposes a Bayesian network model for human reliability analysis (HRA), supported by a prospective human performance model for quantification. The novelty of this work resides into two aspects: (a) incorporation of harbor specific conditions for maritime navigation HRA, including the performance of ship's crew and maritime pilots and (b) the use of a prospective human performance model as an alternative to expert's opinion for quantification purposes. To illustrate the usage of the proposed methodology, this paper presents an analysis of the route keeping task along waterways, starting from the quantification of human error probabilities (HEP) and including the ranking of the main performance shaping factors that contribute to the HEP.


Author(s):  
Oladokun Sulaiman Olanrewaju

The traditional approach to the study of human factors in the maritime field involves the analysis of accidents without considering human factor reliability analysis. The main approaches being used to analyze human errors are statistical approach and probability theory approach. Another suitable approach to the study of human factors in the maritime industry is the quasi-experimental field study where variations in performance (for example attention) can be observed as a function of natural variations in performance shaping factors. This chapter analyzes result of modelling for human error and human reliability emanating from the use of technology on board ship navigation in coastal water areas by using qualitative and quantitative tools. Accident reports from marine department are used as empirical material for quantitative analysis. The literature on safety is based on common themes of accidents, the influence of human error resulting from technology usage design, accident reports from MAIB, and interventions information are used for qualitative assessment. Human reliability assessment involves analysis of accidents in waterways emanating from human-technology factors. The chapter reports enhancement requirement of the methodological issues with previous research study, monitoring, and deduces recommendations for technology modification of the human factors necessary to improve maritime safety performance. The result presented can contribute to rule making and safety management leading to the development of guidelines and standards for human reliability risk management for ships navigating within inland and coastal waters.


Sign in / Sign up

Export Citation Format

Share Document