scholarly journals USING ABSOLUTE PROBABILITY JUDGEMENT METHOD FOR HUMAN RELIABILITY ASSESSMENT - A CASE STUDY

2017 ◽  
Vol 7 (2) ◽  
Author(s):  
Evica Stojiljković ◽  
Bojan Bijelić ◽  
Marko Cvetković

Human reliability assessment is becoming increasingly important in risk assessment in all industrial systems. All methods for human reliability assessment are used to estimate human error probabilities, which is a measure of human reliability. Human error assessment is certainly a challenge fo r all the experts involved in risk assessment today. In Serbia, this issue has not received proper attention yet. Therefore, this paper presents the case study which confirmed that the usage of Absolute Probability Judgement for proper human reliability assessment. This approach was used in a case study of the Electric Power Company in Serbia (hereinafter EPCS) for the purpose of the analysis accident of a repair intervention on a 10/0.4 kV steel lattice tower “Nova Kolonija” (jurisdiction of EPCS, Veliki Trnovac, ED “Jugoistok”, Nis, Serbia). The case study performed at the EPCS has confirmed that the conventional APJ approach is not only highly applicable for quantification of human errors, but also comprehensive and simple to use in risk assessment of complex systems. Key words: Absolute Probability Judgement, Human Reliability Assessment, Accident, Case Study

Author(s):  
Evica Stojiljkovic ◽  
Bojan Bijelic ◽  
Marko Cvetkovic

In complex industrial systems, human error has been cited as a cause or a contributing factor in accidents and disasters. The need for improved Human Reliability Assessment (HRA) methodologies that should be applied in Probabilistic Safety Assessments, ever since the early 1990s, has motivated a number of major activities in research and development worldwide. Therefore, the main purpose of this paper is to show the practical application of Human Error Assessment and Reduction Technique (HEART) for HRA in Electric Power Company of Serbia (EPCS). The usefulness of this technique for HRA has been approved in a case study of an accident which occurred during a repair on a 10/0.4 kV steel lattice tower “Maričiće“, Kuršumlija (jurisdiction of EPCS, ED “Jugoistok”, Nis, Serbia). For the purpose of this study, a database on work-related injuries, accidents, and critical interventions that occurred over a 10-year period was created. The research comprised an analysis of 1074 workplaces, with a total of 3997 employees. The case study performed at the EPCS confirmed that the HEART is based on knowledge of human activities and relies on expert opinion to determine the Error Producing Condition (EPCs) that affected the situation. The HEART can be used in different industrial systems, as a risk assessment, accident investigation and design tool. In addition, it is a relatively fast tool for assessment of human error probability that is easily applied and understood. 


2019 ◽  
pp. 528-543
Author(s):  
Khashayar Hojjati-Emami ◽  
Balbir S. Dhillon ◽  
Kouroush Jenab

Human error has played a critical role in the events precipitating the road accidents. Such accidents can be predicted and prevented by risk assessment, in particular assessing the human contribution to risk. As part of the Human Reliability Assessment (HRA) process, it is usually necessary not only to define what human errors can occur, but how often they will occur. Lack of understanding of the failure distribution characteristics of drivers on roads at any given time is a factor impeding the development of human reliability assessment and prediction of road accidents in order to take best proactive measures. The authors developed the complete investigation methodology for crash data collection. Furthermore, they have experimentally tested the proposed predictive behavioral characteristics of drivers in light of their instantaneous error rate over the course of driving period to assist processing and analysis of data collection as part of risk assessment. The findings of this research can assist road safety authorities to collect the necessary data, to better understand the behavioral characteristics of drivers on roads, to make more accurate risk assessments and finally to come up with right preventive measures.


2014 ◽  
Vol 5 (4) ◽  
pp. 1-15
Author(s):  
Khashayar Hojjati-Emami ◽  
Balbir S. Dhillon ◽  
Kouroush Jenab

Human error has played a critical role in the events precipitating the road accidents. Such accidents can be predicted and prevented by risk assessment, in particular assessing the human contribution to risk. As part of the Human Reliability Assessment (HRA) process, it is usually necessary not only to define what human errors can occur, but how often they will occur. Lack of understanding of the failure distribution characteristics of drivers on roads at any given time is a factor impeding the development of human reliability assessment and prediction of road accidents in order to take best proactive measures. The authors developed the complete investigation methodology for crash data collection. Furthermore, they have experimentally tested the proposed predictive behavioral characteristics of drivers in light of their instantaneous error rate over the course of driving period to assist processing and analysis of data collection as part of risk assessment. The findings of this research can assist road safety authorities to collect the necessary data, to better understand the behavioral characteristics of drivers on roads, to make more accurate risk assessments and finally to come up with right preventive measures.


2021 ◽  
Vol 11 (2) ◽  
pp. 749
Author(s):  
Yaniel Torres ◽  
Sylvie Nadeau ◽  
Kurt Landau

Manual assembly operations are sensitive to human errors that can diminish the quality of final products. The paper shows an application of human reliability analysis in a realistic manufacturing context to identify where and why manual assembly errors occur. The techniques SHERPA and HEART were used to perform the analysis of human reliability. Three critical tasks were selected for analysis based on quality records: (1) installation of three types of brackets using fasteners, (2) fixation of a data cable to the assembly structure using cushioned loop clamps and (3) installation of cap covers to protect inlets. The identified error modes with SHERPA were: 36 action errors, nine selection errors, eight information retrieval errors and six checking errors. According to HEART, the highest human error probabilities were associated with assembly parts sensitive to geometry-related errors (brackets and cushioned loop clamps). The study showed that perceptually engaging assembly instructions seem to offer the highest potential for error reduction and performance improvement. Other identified areas of action were the improvement of the inspection process and workers’ provision with better tracking and better feedback. Implementation of assembly guidance systems could potentially benefit worker’s performance and decrease assembly errors.


Author(s):  
Victor G. Krymsky ◽  
Farit M. Akhmedzhanov

Abstract The well-known standardized plant analysis risk-human reliability (SPAR-H) methodology is widely used for analysis of human reliability in complex technological systems. It allows assessing the human error probability taking into account eight important groups of performance shaping factors. Application of this methodology to practical problems traditionally involves assumptions which are difficult to verify under the conditions of uncertainty. In particular, it introduces only two possible values of the nominal human error probabilities (for diagnosis and for actions) which do not cover the whole spectrum of the tasks within operator's activity. In addition, although the traditional methodology considers the probabilities of human errors as the random variables, it operates only on a single predefined type of distribution for these variables and does not deal with the real situations in which the type of distribution remains uncertain. The paper proposes modification to the classical approach to enable more adequate modeling of real situations with the lack of available information. The authors suggest usage of the interval-valued probability technique and of the expert judgment on the maximum probability density for actual probabilities of human errors. Such methodology allows obtaining generic results that are valid for the entire set of possible distributions (not only for one of them). The modified methodology gives possibility to derive final assessments of human reliability in interval form indicating “the best case” and “the worst case.” A few numerical examples illustrate the main stages of the suggested procedure.


2011 ◽  
Vol 97-98 ◽  
pp. 825-830 ◽  
Author(s):  
Yong Tao Xi ◽  
Chong Guo

Safety is the eternal theme in shipping industry. Research shows that human error is the main reason of maritime accidents. Therefore, it is very necessary to research marine human errors, to discuss the contexts which caused human errors and how the contexts effect human behavior. Based on the detailed investigation of human errors in collision avoidance behavior which is the most key mission in navigation and the Performance Shaping Factors (PSFs), human reliability of mariners in collision avoidance was analyzed by using the integration of APJE and SLIM. Result shows that this combined method is effective and can be used for the research of maritime human reliability.


Author(s):  
Oladokun Sulaiman Olanrewaju

The traditional approach to the study of human factors in the maritime field involves the analysis of accidents without considering human factor reliability analysis. The main approaches being used to analyze human errors are statistical approach and probability theory approach. Another suitable approach to the study of human factors in the maritime industry is the quasi-experimental field study where variations in performance (for example attention) can be observed as a function of natural variations in performance shaping factors. This chapter analyzes result of modelling for human error and human reliability emanating from the use of technology on board ship navigation in coastal water areas by using qualitative and quantitative tools. Accident reports from marine department are used as empirical material for quantitative analysis. The literature on safety is based on common themes of accidents, the influence of human error resulting from technology usage design, accident reports from MAIB, and interventions information are used for qualitative assessment. Human reliability assessment involves analysis of accidents in waterways emanating from human-technology factors. The chapter reports enhancement requirement of the methodological issues with previous research study, monitoring, and deduces recommendations for technology modification of the human factors necessary to improve maritime safety performance. The result presented can contribute to rule making and safety management leading to the development of guidelines and standards for human reliability risk management for ships navigating within inland and coastal waters.


Sign in / Sign up

Export Citation Format

Share Document