performance shaping factors
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 27)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Daniela Frazão ◽  
José Sobral

BACKGROUND: Human error has been studied for large decades with special application to critical infrastructures and processes where the impact of such errors can induce severe or catastrophic consequences. In this sense it is of utmost importance to extend this type of analysis to other fields as medicine. OBJECTIVE: This study proposes a semi-quantitative human error risk assessment methodology, including the analysis of the so-called Performance Shaping Factors (PSFs), in order to contribute to health services improvement. METHODS: A questionnaire including the considered PSFs is answered in order to determine the impact of each PSF and its influence on human error. It allows performing a Human Error Risk Assessment (HERA) for both the patient (HERAp) and the quality of the service (HERAq). RESULTS: The results show the PSFs with the highest impact factor. After applying corrective measures, it is possible to observe the impact on the reduction of the risk for patient and for the quality of the service. CONCLUSIONS: The application of the methodology with the inclusion of the impact of PSFs allows minimizing or mitigating failure modes with greater risk as well as increasing patient safety and promoting a better quality of medical procedures.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Maria Papanikou ◽  
Utku Kale ◽  
András Nagy ◽  
Konstantinos Stamoulis

Purpose This study aims to identify variability in aviation operators in order to gain greater understanding of the changes in aviation professional groups. Research has commonly addressed human factors and automation in broad categories according to a group’s function (e.g., pilots, air traffic controllers [ATCOs], engineers). Accordingly, pilots and Air Traffic Controls (ATCOs) have been treated as homogeneous groups with a set of characteristics. Currently, critical themes of human performance in light of systems’ developments place the emphasis on quality training for improved situational awareness (SA), decision-making and cognitive load. Design/methodology/approach As key solutions centre on the increased understanding and preparedness of operators through quality training, the authors deploy an iterative mixed methodology to reveal generational changes of pilots and ATCOs. In total, 46 participants were included in the qualitative instrument and 70 in the quantitative one. Preceding their triangulation, the qualitative data were analysed using NVivo and the quantitative analysis was aided through descriptive statistics. Findings The results show that there is a generational gap between old and new generations of operators. Although positive views on advanced systems are being expressed, concerns about cognitive capabilities in the new systems, training and skills gaps, workload and role implications are presented. Practical implications The practical implications of this study extend to different profiles of operators that collaborate either directly or indirectly and that are critical to aviation safety. Specific implications are targeted on automation complacency, bias and managing information load, and training aspects where quality training can be aided by better understanding the occupational transitions under advanced systems. Originality/value In this paper, the authors aimed to understand the changing nature of the operators’ profession within the advanced technological context, and the perceptions and performance-shaping factors of pilots and ATCOs to define the generational changes.


2021 ◽  
Vol 23 (4) ◽  
pp. 646-658
Author(s):  
Haiyang Che ◽  
Shengkui Zeng ◽  
Qidong You ◽  
Yueheng Song ◽  
Jianbin Guo

Many lives and aircrafts have been lost due to human errors associated with mental workload overload (MWLOL). Human errors are successfully considered in existing Fault Tree Analysis (FTA) methods. However, MWLOL is considered through Performance Shaping Factors indirectly and its information is hidden in FT construction, which is not conducive to analyze the root causes of human errors and risks. To overcome this difficulty, we develop a risk analysis method where Multiple Resources Model (MRM) is incorporated into FTA methods. MRM analyzes mental workload by estimating the resources used during performing concurrent tasks, probably including abnormal situation handling tasks introduced by basic events in FT. Such basic events may cause MWLOL and then trigger corresponding human error events. A MWLOL gate is proposed to describe MWLOL explicitly and add these new relationships to traditional FT. This new method extends previous FTA methods and provides a more in-depth risk analysis. An accident, a helicopter crash in Maryland, is analyzed by the proposed method.


Author(s):  
Victor G. Krymsky ◽  
Farit M. Akhmedzhanov

Abstract The well-known standardized plant analysis risk-human reliability (SPAR-H) methodology is widely used for analysis of human reliability in complex technological systems. It allows assessing the human error probability taking into account eight important groups of performance shaping factors. Application of this methodology to practical problems traditionally involves assumptions which are difficult to verify under the conditions of uncertainty. In particular, it introduces only two possible values of the nominal human error probabilities (for diagnosis and for actions) which do not cover the whole spectrum of the tasks within operator's activity. In addition, although the traditional methodology considers the probabilities of human errors as the random variables, it operates only on a single predefined type of distribution for these variables and does not deal with the real situations in which the type of distribution remains uncertain. The paper proposes modification to the classical approach to enable more adequate modeling of real situations with the lack of available information. The authors suggest usage of the interval-valued probability technique and of the expert judgment on the maximum probability density for actual probabilities of human errors. Such methodology allows obtaining generic results that are valid for the entire set of possible distributions (not only for one of them). The modified methodology gives possibility to derive final assessments of human reliability in interval form indicating “the best case” and “the worst case.” A few numerical examples illustrate the main stages of the suggested procedure.


Author(s):  
Stavros Prineas ◽  
Kathleen Mosier ◽  
Claus Mirko ◽  
Stefano Guicciardi

AbstractNon-technical Skills (NTS) are a set of generic cognitive and social skills, exhibited by individuals and teams, that support technical skills when performing complex tasks. Typical NTS training topics include performance shaping factors, planning and preparation for complex tasks, situation awareness, perception of risk, decision-making, communication, teamwork and leadership. This chapter provides a framework for understanding these skills in theory and practice, how they interact, and how they have been applied in healthcare, as well as avenues for future research.


Author(s):  
Ronald Boring ◽  
Thomas Ulrich ◽  
Torrey Mortenson ◽  
David German

This paper provides background on the process to enhance human reliability analysis (HRA) for long-duration space applications. While short-duration missions largely mirror ground activities and fit well with existing HRA methods, new missions to the Moon or Mars entail a significantly longer duration of time in space for astronauts. This extended period in space presents opportunities to affect astronaut performance that require consideration of new performance shaping factors (PSFs). In the present paper, we conducted a meta-analysis on fatigue and developed a new PSF to account for chronic sleep deprivation associated with long-duration space missions. Fatigue provides a starting point for additional PSFs needed for space HRA.


2020 ◽  
pp. bmjqs-2019-010740
Author(s):  
Myrtede Alfred ◽  
Ken Catchpole ◽  
Emily Huffer ◽  
Larry Fredendall ◽  
Kevin M Taaffe

BackgroundSterile processing departments (SPDs) play a crucial role in surgical safety and efficiency. SPDs clean instruments to remove contaminants (decontamination), inspect and reorganise instruments into their correct trays (assembly), then sterilise and store instruments for future use (sterilisation and storage). However, broken, missing or inappropriately cleaned instruments are a frequent problem for surgical teams. These issues should be identified and corrected during the assembly phase.ObjectiveA work systems analysis, framed within the Systems Engineering Initiative for Patient Safety (SEIPS) model, was used to develop a comprehensive understanding of the assembly stage of reprocessing, identify the range of work challenges and uncover the inter-relationship among system components influencing reliable instrument reprocessing.MethodsThe study was conducted at a 700-bed academic hospital in the Southeastern United States with two reprocessing facilities from October 2017 to October 2018. Fifty-six hours of direct observations, 36 interviews were used to iteratively develop the work systems analysis. This included the process map and task analysis developed to describe the assembly system, the abstraction hierarchy developed to identify the possible performance shaping factors (based on SEIPS) and a variance matrix developed to illustrate the relationship among the tasks, performance shaping factors, failures and outcomes. Operating room (OR) reported tray defect data from July 2016 to December 2017 were analysed to identify the percentage and types of defects across reprocessing phases the most common assembly defects.ResultsThe majority of the 3900 tray defects occurred during the assembly phase; impacting 5% of surgical cases (n=41 799). Missing instruments, which could result in OR delays and increased surgical duration, were the most commonly reported assembly defect (17.6%, n=700). High variability was observed in the reassembling of trays with failures including adding incorrect instruments, omitting instruments and failing to remove damaged instrument. These failures were precipitated by technological shortcomings, production pressures, tray composition, unstandardised instrument nomenclature and inadequate SPD staff training.ConclusionsSupporting patient safety, minimising tray defects and OR delays and improving overall reliability of instrument reprocessing require a well-designed instrument tracking system, standardised nomenclature, effective coordination of reprocessing tasks between SPD and the OR and well-trained sterile processing technicians.


Sign in / Sign up

Export Citation Format

Share Document