The Effects of Upstream Wall Roughness On the Spatio-Temporal Characteristics of Flow Separations Induced by a Forward-Facing Step

Author(s):  
Sedem Kumahor ◽  
Xingjun Fang ◽  
Mark F. Tachie

Abstract Separating and reattaching turbulent flows induced by a forward-facing step submerged in thick oncoming turbulent boundary layers (TBL) developed over smooth and rough upstream walls were investigated using time-resolved particle image velocimetry. The examined upstream walls resulted in smooth, transitionally rough and fully rough wall conditions. The upstream boundary layer thicknesses were 4.3 and 6.7 times the step height in the smooth and rough wall cases, respectively. The Reynolds number based on the step height and free-stream velocity was 7800. The effects of upstream wall roughness on the mean flow characteristics, Reynolds stresses defined in both Cartesian and curvilinear coordinate systems as well as the unsteadiness of the turbulent separation bubbles were critically examined. The results show that upstream wall roughness increases the boundary layer thickness and turbulence intensity and consequently, promotes early mean flow reattachment over the step. Distinct regions of significantly elevated vertical Reynolds normal stress and Reynolds shear stress were observed upstream of the step in the fully rough wall case compared to the smooth wall case. Proper orthogonal decomposition (POD) and the reverse flow area over the step were employed to investigate the unsteadiness of the separation bubbles. The first POD mode coefficient and the reverse flow area over the step were well correlated and exhibited the same dominant frequency.

Author(s):  
Sedem Kumahor ◽  
Xingjun Fang ◽  
Ali Nematollahi ◽  
Mark F. Tachie

Abstract The unsteady characteristics of flow separations induced by a forward-facing step immersed in thick oncoming turbulent boundary layers developed over smooth and fully rough upstream walls were experimentally studied using time-resolved particle image velocimetry. The upstream boundary layer thicknesses were 4.3 and 6.7 times the step height in the smooth and fully rough wall cases, respectively. The Reynolds number based on the step height and free-stream velocity was 7800. The effects of upstream wall roughness on the instantaneous separated shear layer, frequency spectra and two-point correlations are critically examined. Proper orthogonal decomposition (POD) is employed to investigate the mechanism underlying the unsteadiness of turbulent separation bubbles over the step. The first two POD modes exhibit the same topology in both cases. The energy fraction of the first mode is significantly larger in the rough wall case, signifying the enhanced large-scale motion residing in the incoming turbulent boundary layer. The correlation between the reverse flow area over the step and the first POD mode coefficient is much stronger in the rough wall case than in the smooth wall case. High levels of vertical fluctuating velocity immediately upstream of the leading edge of the step is mostly associated with the first POD mode in the rough wall case, but is further influenced by the higher POD modes in the smooth wall case. Irrespective of the upstream wall roughness, the vertical fluctuating velocity over the step are mostly induced by vortex shedding motion from the leading edge of the step.


Author(s):  
Heath Chalmers ◽  
Xingjun Fang ◽  
Mark F. Tachie

Abstract Separated and reattached turbulent flows induced by two-dimensional forward-backward-facing steps with different streamwise lengths submerged in a thick turbulent boundary layer are investigated using a time-resolved particle image velocimetry. The examined aspect ratios of the step range from 1 to 8, and the Reynolds number based on the free-stream velocity and step height is 13 200. The thickness of the oncoming turbulent boundary layer is 6.5 times the step height. The effects of varying aspect ratio of the steps on the mean flow, Reynolds stresses, triple correlations and unsteadiness of turbulent separation bubbles are studied. It was found that the mean flow reattaches over the step for forward-backward facing steps with aspect ratios of 2 and higher. The temporal variation of the first proper orthogonal decomposition (POD) mode and reverse flow area, which is used to examine the flapping motion of separation bubble, shows remarkable synchronization.


2016 ◽  
Vol 807 ◽  
pp. 258-302 ◽  
Author(s):  
Jayaprakash N. Murugan ◽  
Raghuraman N. Govardhan

We study in the present work a Mach 2.5 flow over a forward-facing step. The focus of the work is the flow ahead of the step, in particular, the unsteady interactions between the shock, the boundary layer and the separation bubble. The primary geometrical parameter in the problem is the ratio of the step height to the incoming boundary layer thickness, $h/\unicode[STIX]{x1D6FF}$, which is kept fixed at 2. Results are presented from detailed particle image velocimetry (PIV) measurements in two orthogonal planes to obtain a reasonable picture of the whole flow field. The mean velocity field in the central cross-stream or wall-normal ($x$–$y$) plane shows that the incoming boundary layer separates upstream of the step forming a large separation bubble ahead of the step, which can be relatively well resolved in PIV measurements compared to the compression ramp cases. Wall pressure fluctuation spectra close to the separation location show a dominant frequency ($f$) that is two orders of magnitude smaller than the characteristic frequency of the incoming boundary layer ($U_{\infty }/\unicode[STIX]{x1D6FF}$), consistent with low-frequency motions of the shock that have received a lot of recent attention ($U_{\infty }$ $=$ free-stream velocity, $\unicode[STIX]{x1D6FF}$ $=$ boundary layer thickness). PIV measurements in the wall-normal plane show large variations in shock position with time. The shock position measured from velocity data outside the boundary layer is found to be well correlated with the reverse flow area ahead of the step, and weakly correlated to structures in the incoming boundary layer. In contrast, the shock foot, determined from velocity data within the boundary layer, is found to be well correlated to the low- and high-speed streaks in the incoming boundary layer, in addition to the reverse flow area ahead of the step. Instantaneous velocity fields in the spanwise ($x$–$z$) plane parallel to the lower wall show that the shock is broadly two-dimensional with small spanwise ripples, while the recirculation region has very large spanwise variations. The spanwise-averaged shock location is found to be well correlated to the most upstream location of the recirculation region over a spanwise length ($x_{r,min}^{sp}$). Instantaneous velocity fields show that when some part of the recirculation region is far upstream, the corresponding nearly two-dimensional shock is also far upstream. On the other hand, when $x_{r,min}^{sp}$ is relatively downstream, the resulting shock is also found to be downstream. Hence, the present results suggest that for the forward-facing step configuration, the large-scale streamwise motions of the shock are mainly correlated to the most upstream point of the recirculation region, which has large spanwise variations.


The production of sound by scattering of the near field of low Mach number boundary-layer turbulence by a rough, rigid wall is examined on the basis of Lighthill’s theory ( Proc. R. Soc. Lond . A 211, 564 (1952)) of aerodynamic noise. The radiation is expressed in terms of the turbulence pressure spectrum on a control surface that is parallel to the mean plane of the wall and at a stand-off distance equal to the height of the wall roughness elements, the surface irregularities being modelled by a distribution of hemispherical bosses on an otherwise plane wall. The intensity of the sound produced by unit area of the wall varies as the sixth power of the main stream velocity and, for given wall roughness, increases as the boundary-layer thickness decreases. These conclusions are in accord with experimental observations reported by Hersh { AIAA paper no. 83-0786) of the generation of high frequency sound by turbulent flow from sand-roughened pipes, and it is shown how, for moderately rough pipes, the theory reproduces the spectral characteristics of Hersh’s data.


Author(s):  
Sedem Kumahor ◽  
Xingjun Fang ◽  
William Ediger ◽  
Mark F. Tachie

Abstract Separating and reattaching turbulent flows induced by a forward-facing step submerged in thick oncoming turbulent boundary layers developed over smooth and rough walls were investigated using time-resolved particle image velocimetry. Both smooth and fully rough upstream bottom wall conditions were examined and the resultant oncoming boundary layer thickness were 4.3 and 6.7 times the step height, respectively. The Reynolds number based on the step height and free-stream velocity was 7800. The mean velocities, Reynolds stresses analyzed in both Cartesian and curvilinear coordinate systems, eddy viscosity, correlation coefficient and third order moments are discussed. The results indicate that, due to the enhanced turbulence intensity and shear rate in the fully rough case, distinct elevated regions of vertical and shear Reynolds stresses are consistent upstream of the leading edge of the step while the magnitude of the Reynolds stresses are consistently higher than observed in the smooth case. The correlation coefficient, eddy viscosity and third order moments also show distinct elevated regions upstream of the leading edge of the step in the fully rough case. Above the step, distinct elevated regions of the Reynolds stresses, eddy viscosity and correlation coefficient are observed in both cases with the peak values at a vertical location corresponding to the maximum elevation of the mean separating streamline.


2019 ◽  
Vol 862 ◽  
Author(s):  
Johan Meyers ◽  
Bharathram Ganapathisubramani ◽  
Raúl Bayoán Cal

In rough-wall boundary layers, wall-parallel non-homogeneous mean-flow solutions exist that lead to so-called dispersive velocity components and dispersive stresses. They play a significant role in the mean-flow momentum balance near the wall, but typically disappear in the outer layer. A theoretical framework is presented to study the decay of dispersive motions in the outer layer. To this end, the problem is formulated in Fourier space, and a set of governing ordinary differential equations per mode in wavenumber space is derived by linearizing the Reynolds-averaged Navier–Stokes equations around a constant background velocity. With further simplifications, analytically tractable solutions are found consisting of linear combinations of $\exp (-kz)$ and $\exp (-Kz)$, with $z$ the wall distance, $k$ the magnitude of the horizontal wavevector $\boldsymbol{k}$, and where $K(\boldsymbol{k},Re)$ is a function of $\boldsymbol{k}$ and the Reynolds number $Re$. Moreover, for $k\rightarrow \infty$ or $k_{1}\rightarrow 0$ (with $k_{1}$ the stream-wise wavenumber), $K\rightarrow k$ is found, in which case solutions consist of a linear combination of $\exp (-kz)$ and $z\exp (-kz)$, and are independent of the Reynolds number. These analytical relations are compared in the limit of $k_{1}=0$ to the rough boundary layer experiments by Vanderwel & Ganapathisubramani (J. Fluid Mech., vol. 774, 2015, R2) and are in reasonable agreement for $\ell _{k}/\unicode[STIX]{x1D6FF}\leqslant 0.5$, with $\unicode[STIX]{x1D6FF}$ the boundary-layer thickness and $\ell _{k}=2\unicode[STIX]{x03C0}/k$.


2015 ◽  
Vol 780 ◽  
pp. 192-214 ◽  
Author(s):  
J. Yuan ◽  
U. Piomelli

The direct numerical simulation of an accelerating boundary layer over a rough wall has been carried out to investigate the coupling between the effects of roughness and strong free-stream acceleration. While the favourable pressure gradient is sufficient to achieve quasi-laminarization on a smooth wall, the flow reversion is prevented on a rough wall, and a higher friction coefficient, a faster increase of turbulence intensity compared to the free-stream velocity and more isotropic turbulence near the wall are observed. The logarithmic region of the mean-velocity profile presents an initial decrease in slope as in the smooth case, but soon recovers, as the fully rough regime is reached and a new overlap region is established. A strong coupling between the roughness and acceleration effects develops as roughness leads to more responsive turbulence and prevents the strong acceleration from stabilizing the turbulence, and the acceleration intensifies the velocity scale of the wake field (i.e. the near-wall spatial heterogeneity of the time-averaged velocity distribution). The combined effect is a ‘rougher’ surface as the flow accelerates. In addition, the link between the local values of the free stream and the near-wall velocity depends on the flow history; this explains the different flow responses observed in previous studies, in terms of friction coefficient, turbulent kinetic energy and Reynolds-stress anisotropy. This study elucidates the near-wall flow dynamics, which may be used to explain other non-canonical flows over rough walls.


2011 ◽  
Vol 683 ◽  
pp. 172-211 ◽  
Author(s):  
S. Lardeau ◽  
M. A. Leschziner

AbstractA computational large eddy simulation (LES) study is presented of the interaction between a turbulent boundary layer separating from a rounded ramp in a duct and a pair of spanwise-periodic, round synthetic jets, actuated upstream of the nominal separation line. Several scenarios are considered, for different injection angles and velocity ratios. In all cases, the actuation frequency corresponds to the shedding-instability mode of the separated shear layer. Experimental data, available for both the baseline flow and one actuated configuration, are used to verify the validity of the computational solutions. The analysis includes a separation of coherent and stochastic contributions to the time-averaged statistics of the auto- and cross-correlations of the fluctuations. The control authority is examined by reference to the effects of the actuation on the size of the separated zone, the momentum thickness of the boundary layer, the velocity field, various turbulence quantities and phase-averaged properties. The study demonstrates that the principal aspect of the interaction, at mean-flow level, is an increase in mixing provoked by the formation of strong streamwise vortices away from the wall, the induction of much weaker streamwise vortices close to the wall, and the extra production of stochastic turbulence caused by unsteady straining. The coherent stresses arising from the periodic perturbations are high – typically 5 times the levels of the unperturbed flow – but only within about 5–7 diameters of the jet orifice, and 2 orifice diameters on each side of the jet, and these are dominant primarily in the outer parts of the boundary layer. Stochastic turbulence is also elevated, but more modestly. The global effect of the actuation is a reduction of 10–20 % in the length of the separated region and 20–40 % in the thickness of the reverse-flow layer, depending on the actuation scheme, counter-flow actuation being the most effective. This reduction is mainly associated with a delay in separation. These results highlight the need for synthetic jets to be placed close to the separation zone and for the inter-jet distance to be of order 5 or lower to achieve a high level of separation-control authority.


2004 ◽  
Vol 2004.2 (0) ◽  
pp. 435-436
Author(s):  
Takatsugu KAMEDA ◽  
Hideo OSAKA ◽  
Shinsuke MOCHIZUKI ◽  
Katsuya HIGAKI

Sign in / Sign up

Export Citation Format

Share Document