Screening of retired lithium-ion batteries using incremental capacity charging curve based residual capacity estimation method for facilitating sustainable circular lithium-ion battery system

Author(s):  
Honglei Li ◽  
Liang Cong ◽  
Huazheng Ma ◽  
Weiwei Liu ◽  
Yelin Deng ◽  
...  

Abstract The rapidly growing deployment of lithium-ion batteries in electric vehicles is associated with a great waste of natural resource and environmental pollution caused by manufacturing and disposal. Repurposing the retired lithium-ion batteries can extend their useful life, creating environmental and economic benefits. However, the residual capacity of retired lithium-ion batteries is unknown and can be drastically different owing to various working history and calendar life. The main objective of this paper is to develop a fast and accurate capacity estimation method to classify the retired batteries by the remaining capacity. The hybrid technique of adaptive genetic algorithm and back propagation neural network is developed to estimate battery remaining capacity using the training set comprised of the selected characteristic parameters of incremental capacity curve of battery charging. Also, the paper investigated the correlation between characteristic parameters with capacity fade. The results show that capacity estimation errors of the proposed neural network are within 3%. Peak intensity of the incremental capacity curve has strong correlation with capacity fade. The findings also show that the translation of peak of the incremental capacity curve is strongly related with internal resistance.

2021 ◽  
Vol 12 (4) ◽  
pp. 256
Author(s):  
Yi Wu ◽  
Wei Li

Accurate capacity estimation can ensure the safe and reliable operation of lithium-ion batteries in practical applications. Recently, deep learning-based capacity estimation methods have demonstrated impressive advances. However, such methods suffer from limited labeled data for training, i.e., the capacity ground-truth of lithium-ion batteries. A capacity estimation method is proposed based on a semi-supervised convolutional neural network (SS-CNN). This method can automatically extract features from battery partial-charge information for capacity estimation. Furthermore, a semi-supervised training strategy is developed to take advantage of the extra unlabeled sample, which can improve the generalization of the model and the accuracy of capacity estimation even in the presence of limited labeled data. Compared with artificial neural networks and convolutional neural networks, the proposed method is demonstrated to improve capacity estimation accuracy.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3333 ◽  
Author(s):  
Shaofei Qu ◽  
Yongzhe Kang ◽  
Pingwei Gu ◽  
Chenghui Zhang ◽  
Bin Duan

Efficient and accurate state of health (SoH) estimation is an important challenge for safe and efficient management of batteries. This paper proposes a fast and efficient online estimation method for lithium-ion batteries based on incremental capacity analysis (ICA), which can estimate SoH through the relationship between SoH and capacity differentiation over voltage (dQ/dV) at different states of charge (SoC). This method estimates SoH using arbitrary dQ/dV over a large range of charging processes, rather than just one or a limited number of incremental capacity peaks, and reduces the SoH estimation time greatly. Specifically, this method establishes a black box model based on fitting curves first, which has a smaller amount of calculation. Then, this paper analyzes the influence of different SoC ranges to obtain reasonable fitting curves. Additionally, the selection of a reasonable dV is taken into account to balance the efficiency and accuracy of the SoH estimation. Finally, experimental results validate the feasibility and accuracy of the method. The SoH estimation error is within 5% and the mean absolute error is 1.08%. The estimation time of this method is less than six minutes. Compared to traditional methods, this method is easier to obtain effective calculation samples and saves computation time.


2019 ◽  
Vol 255 ◽  
pp. 113817 ◽  
Author(s):  
Quanqing Yu ◽  
Rui Xiong ◽  
Ruixin Yang ◽  
Michael G. Pecht

Sign in / Sign up

Export Citation Format

Share Document