Gaussian Process Based Model to Optimize Additively Manufactured Powder Microstructures From Phase Field Modeling

Author(s):  
Arunabha Batabyal ◽  
Sugrim Sagar ◽  
Jian Zhang ◽  
Tejesh Dube ◽  
Xuehui Yang ◽  
...  

Abstract A persistent problem in the selective laser sintering process is to maintain the quality of additively manufactured parts, which can be attributed to the various sources of uncertainty. In this work, a two-particle phase-field microstructure model has been analyzed. The sources of uncertainty as the two input parameters were surface diffusivity and inter-particle distance. The response quantity of interest (QOI) was selected as the size of the neck region that develops between the two particles. Two different cases with equal and unequal sized particles were studied. It was observed that the neck size increased with increasing surface diffusivity and decreased with increasing inter-particle distance irrespective of particle size. Sensitivity analysis found that the inter-particle distance has more influence on variation in neck size than that of surface diffusivity. The machine learning algorithm Gaussian Process Regression was used to create the surrogate model of the QOI. Bayesian Optimization method was used to find optimal values of the input parameters. For equal-sized particles, optimization using Probability of Improvement provided optimal values of surface diffusivity and inter-particle distance as 23.8268 and 40.0001, respectively. The Expected Improvement as an acquisition function gave optimal values 23.9874 and 40.7428, respectively. For unequal sized particles, optimal design values from Probability of Improvement were 23.9700 and 33.3005, respectively, while those from Expected Improvement were 23.9893 and 33.9627, respectively. The optimization results from the two different acquisition functions seemed to be in good agreement.

2021 ◽  
Author(s):  
◽  
Mashall Aryan

<p>The solution to many science and engineering problems includes identifying the minimum or maximum of an unknown continuous function whose evaluation inflicts non-negligible costs in terms of resources such as money, time, human attention or computational processing. In such a case, the choice of new points to evaluate is critical. A successful approach has been to choose these points by considering a distribution over plausible surfaces, conditioned on all previous points and their evaluations. In this sequential bi-step strategy, also known as Bayesian Optimization, first a prior is defined over possible functions and updated to a posterior in the light of available observations. Then using this posterior, namely the surrogate model, an infill criterion is formed and utilized to find the next location to sample from. By far the most common prior distribution and infill criterion are Gaussian Process and Expected Improvement, respectively.    The popularity of Gaussian Processes in Bayesian optimization is partially due to their ability to represent the posterior in closed form. Nevertheless, the Gaussian Process is afflicted with several shortcomings that directly affect its performance. For example, inference scales poorly with the amount of data, numerical stability degrades with the number of data points, and strong assumptions about the observation model are required, which might not be consistent with reality. These drawbacks encourage us to seek better alternatives. This thesis studies the application of Neural Networks to enhance Bayesian Optimization. It proposes several Bayesian optimization methods that use neural networks either as their surrogates or in the infill criterion.    This thesis introduces a novel Bayesian Optimization method in which Bayesian Neural Networks are used as a surrogate. This has reduced the computational complexity of inference in surrogate from cubic (on the number of observation) in GP to linear. Different variations of Bayesian Neural Networks (BNN) are put into practice and inferred using a Monte Carlo sampling. The results show that Monte Carlo Bayesian Neural Network surrogate could performed better than, or at least comparably to the Gaussian Process-based Bayesian optimization methods on a set of benchmark problems.  This work develops a fast Bayesian Optimization method with an efficient surrogate building process. This new Bayesian Optimization algorithm utilizes Bayesian Random-Vector Functional Link Networks as surrogate. In this family of models the inference is only performed on a small subset of the entire model parameters and the rest are randomly drawn from a prior. The proposed methods are tested on a set of benchmark continuous functions and hyperparameter optimization problems and the results show the proposed methods are competitive with state-of-the-art Bayesian Optimization methods.  This study proposes a novel Neural network-based infill criterion. In this method locations to sample from are found by minimizing the joint conditional likelihood of the new point and parameters of a neural network. The results show that in Bayesian Optimization methods with Bayesian Neural Network surrogates, this new infill criterion outperforms the expected improvement.   Finally, this thesis presents order-preserving generative models and uses it in a variational Bayesian context to infer Implicit Variational Bayesian Neural Network (IVBNN) surrogates for a new Bayesian Optimization. This new inference mechanism is more efficient and scalable than Monte Carlo sampling. The results show that IVBNN could outperform Monte Carlo BNN in Bayesian optimization of hyperparameters of machine learning models.</p>


2021 ◽  
Author(s):  
Kundo Park ◽  
Youngsoo Kim ◽  
Minki Kim ◽  
Chihyeon Song ◽  
Jinkyoo Park ◽  
...  

The staggered platelet composite structure, one of the most well-known examples of biomimetics, is inspired by the microstructure of nacre, where stiff mineral platelets are stacked with a small fraction of soft polymer in a brick-and-mortar style. Significant efforts have been made to establish a framework for designing a staggered platelet pattern that achieves an excellent balance of toughness and stiffness. However, because no analytical formula for accurately predicting its toughness is available because of the complexity of the failure mechanism of realistic composites, existing studies have investigated either idealized composites with simplified material properties or realistic composites designed by heuristics. In the present study, we propose a Bayesian optimization framework to design a staggered platelet structure that renders high toughness. Gaussian process regression (GPR) was adopted to model statistically the complex relationship between the shape of the staggered platelet array and the resultant toughness. The Markov chain Monte Carlo algorithm was used to determine the optimal kernel hyperparameter set for the GPR. Starting with 14 initial training data collected with uniaxial tensile tests, a GPR-based Bayesian optimization using the expected improvement (EI) acquisition function was carried out. As a result, it was possible to design a staggered platelet pattern with a toughness 11% higher than that of the best sample in the initial training set, and this improvement was achieved after only three iterations of our optimization cycle. As this optimization framework does not require any material theories and models, this process can be easily adapted and applied to various other material optimization problems based on a limited set of experiments or computational simulations.


2021 ◽  
Author(s):  
◽  
Mashall Aryan

<p>The solution to many science and engineering problems includes identifying the minimum or maximum of an unknown continuous function whose evaluation inflicts non-negligible costs in terms of resources such as money, time, human attention or computational processing. In such a case, the choice of new points to evaluate is critical. A successful approach has been to choose these points by considering a distribution over plausible surfaces, conditioned on all previous points and their evaluations. In this sequential bi-step strategy, also known as Bayesian Optimization, first a prior is defined over possible functions and updated to a posterior in the light of available observations. Then using this posterior, namely the surrogate model, an infill criterion is formed and utilized to find the next location to sample from. By far the most common prior distribution and infill criterion are Gaussian Process and Expected Improvement, respectively.    The popularity of Gaussian Processes in Bayesian optimization is partially due to their ability to represent the posterior in closed form. Nevertheless, the Gaussian Process is afflicted with several shortcomings that directly affect its performance. For example, inference scales poorly with the amount of data, numerical stability degrades with the number of data points, and strong assumptions about the observation model are required, which might not be consistent with reality. These drawbacks encourage us to seek better alternatives. This thesis studies the application of Neural Networks to enhance Bayesian Optimization. It proposes several Bayesian optimization methods that use neural networks either as their surrogates or in the infill criterion.    This thesis introduces a novel Bayesian Optimization method in which Bayesian Neural Networks are used as a surrogate. This has reduced the computational complexity of inference in surrogate from cubic (on the number of observation) in GP to linear. Different variations of Bayesian Neural Networks (BNN) are put into practice and inferred using a Monte Carlo sampling. The results show that Monte Carlo Bayesian Neural Network surrogate could performed better than, or at least comparably to the Gaussian Process-based Bayesian optimization methods on a set of benchmark problems.  This work develops a fast Bayesian Optimization method with an efficient surrogate building process. This new Bayesian Optimization algorithm utilizes Bayesian Random-Vector Functional Link Networks as surrogate. In this family of models the inference is only performed on a small subset of the entire model parameters and the rest are randomly drawn from a prior. The proposed methods are tested on a set of benchmark continuous functions and hyperparameter optimization problems and the results show the proposed methods are competitive with state-of-the-art Bayesian Optimization methods.  This study proposes a novel Neural network-based infill criterion. In this method locations to sample from are found by minimizing the joint conditional likelihood of the new point and parameters of a neural network. The results show that in Bayesian Optimization methods with Bayesian Neural Network surrogates, this new infill criterion outperforms the expected improvement.   Finally, this thesis presents order-preserving generative models and uses it in a variational Bayesian context to infer Implicit Variational Bayesian Neural Network (IVBNN) surrogates for a new Bayesian Optimization. This new inference mechanism is more efficient and scalable than Monte Carlo sampling. The results show that IVBNN could outperform Monte Carlo BNN in Bayesian optimization of hyperparameters of machine learning models.</p>


Author(s):  
Akshay Iyer ◽  
Yichi Zhang ◽  
Aditya Prasad ◽  
Siyu Tao ◽  
Yixing Wang ◽  
...  

Abstract Materials design can be cast as an optimization problem with the goal of achieving desired properties, by varying material composition, microstructure morphology, and processing conditions. Existence of both qualitative and quantitative material design variables leads to disjointed regions in property space, making the search for optimal design challenging. Limited availability of experimental data and the high cost of simulations magnify the challenge. This situation calls for design methodologies that can extract useful information from existing data and guide the search for optimal designs efficiently. To this end, we present a data-centric, mixed-variable Bayesian Optimization framework that integrates data from literature, experiments, and simulations for knowledge discovery and computational materials design. Our framework pivots around the Latent Variable Gaussian Process (LVGP), a novel Gaussian Process technique which projects qualitative variables on a continuous latent space for covariance formulation, as the surrogate model to quantify “lack of data” uncertainty. Expected improvement, an acquisition criterion that balances exploration and exploitation, helps navigate a complex, nonlinear design space to locate the optimum design. The proposed framework is tested through a case study which seeks to concurrently identify the optimal composition and morphology for insulating polymer nanocomposites. We also present an extension of mixed-variable Bayesian Optimization for multiple objectives to identify the Pareto Frontier within tens of iterations. These findings project Bayesian Optimization as a powerful tool for design of engineered material systems.


2021 ◽  
Author(s):  
GilHwan Kim ◽  
Fabrizio Sergi

AbstractIn this study, we determined the feasibility of modeling the relationship between robot control parameters and propulsion mechanics as a Gaussian process. Specifically, we used data obtained in a previous experiment that used pulses of torque applied at the hip and knee joint, at early and late stance, to establish the relationship a 3D control parameter space and the resulting changes in hip extension and propulsive impulse. We estimated Gaussian models both at the group level and for each subject. Moreover, we used the estimated subject-specific models to simulate virtual human-in-the-loop optimization (HIL) experiments based on Bayesian optimization to establish their convergence under multiple combinations of acquisition functions and seed point selection methods.Results of the group-level model are in agreement with those obtained with linear mixed effect model, thus establishing the feasibility of Gaussian process modeling. The estimated subject-specific optimal conditions have large between-subject variability in the metric of propulsive impulse, with only 31% of subjects featuring a subject-specific optimal point in the surrounding of the group-level optimal point. Virtual HIL experiments indicate that expected improvement is the most effective acquisition method, while no significant effect of seed point selection method was observed. Our study may have practical effects on the adoption of HIL robot-assisted training methods focused on propulsion.


2018 ◽  
Vol 62 (4) ◽  
pp. 223-240 ◽  
Author(s):  
Luca Bonfiglio ◽  
Paris Perdikaris ◽  
Giuliano Vernengo ◽  
João Seixas de Medeiros ◽  
George Karniadakis

Author(s):  
Yongxiang Hu ◽  
Zhi Li ◽  
Kangmei Li ◽  
Zhenqiang Yao

Accurate numerical modeling of laser shock processing, a typical complex physical process, is very difficult because several input parameters in the model are uncertain in a range. And numerical simulation of this high dynamic process is very computational expensive. The Bayesian Gaussian process method dealing with multivariate output is introduced to overcome these difficulties by constructing a predictive model. Experiments are performed to collect the physical data of shock indentation profiles by varying laser power densities and spot sizes. A two-dimensional finite element model combined with an analytical shock pressure model is constructed to obtain the data from numerical simulation. By combining observations from experiments and numerical simulation of laser shock process, Bayesian inference for the Gaussian model is completed by sampling from the posterior distribution using Morkov chain Monte Carlo. Sensitivities of input parameters are analyzed by the hyperparameters of Gaussian process model to understand their relative importance. The calibration of uncertain parameters is provided with posterior distributions to obtain concentration of values. The constructed predictive model can be computed efficiently to provide an accurate prediction with uncertainty quantification for indentation profile by comparing with experimental data.


2021 ◽  
Author(s):  
Bo Shen ◽  
Raghav Gnanasambandam ◽  
Rongxuan Wang ◽  
Zhenyu Kong

In many scientific and engineering applications, Bayesian optimization (BO) is a powerful tool for hyperparameter tuning of a machine learning model, materials design and discovery, etc. BO guides the choice of experiments in a sequential way to find a good combination of design points in as few experiments as possible. It can be formulated as a problem of optimizing a “black-box” function. Different from single-task Bayesian optimization, Multi-task Bayesian optimization is a general method to efficiently optimize multiple different but correlated “black-box” functions. The previous works in Multi-task Bayesian optimization algorithm queries a point to be evaluated for all tasks in each round of search, which is not efficient. For the case where different tasks are correlated, it is not necessary to evaluate all tasks for a given query point. Therefore, the objective of this work is to develop an algorithm for multi-task Bayesian optimization with automatic task selection so that only one task evaluation is needed per query round. Specifically, a new algorithm, namely, multi-task Gaussian process upper confidence bound (MT-GPUCB), is proposed to achieve this objective. The MT-GPUCB is a two-step algorithm, where the first step chooses which query point to evaluate, and the second step automatically selects the most informative task to evaluate. Under the bandit setting, a theoretical analysis is provided to show that our proposed MT-GPUCB is no-regret under some mild conditions. Our proposed algorithm is verified experimentally on a range of synthetic functions as well as real-world problems. The results clearly show the advantages of our query strategy for both design point and task.


Sign in / Sign up

Export Citation Format

Share Document