Human-Like Posture Correction for Seven-Degree-of-Freedom Robotic Arm

2021 ◽  
pp. 1-16
Author(s):  
Yu-Heng Deng ◽  
Jen-Yuan (James) Chang

Abstract Owing to advancements in robotics, researchers have been focusing on integrating humanoid robots into actual environments. Most humanoid robots are equipped with seven-degree-of-freedom (DoF) arms that allow them to be flexible in different scenarios. The controller of a 7-DoF robotic arm must select one solution among the infinite sets of solutions for a given inverse kinematics problem. To date, no suitable approach has been developed for identifying appropriate human-like postures for a robotic arm with an offset wrist configuration. In this paper, we propose a novel algorithm that considers the movement of the human arm to consistently find a suitable human-like posture. First, a one-class support vector machine model is employed to classify human-like postures. Then, the algorithm uses the redundancy characteristic of a 7-DoF robotic arm with a linear regression model to enhance the search of human-like postures. Finally, the proposed algorithm is demonstrated in simulation, where it successfully optimized point-to-point trajectories by modifying only the endpoint posture.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 212
Author(s):  
Yu-Wei Liu ◽  
Huan Feng ◽  
Heng-Yi Li ◽  
Ling-Ling Li

Accurate prediction of photovoltaic power is conducive to the application of clean energy and sustainable development. An improved whale algorithm is proposed to optimize the Support Vector Machine model. The characteristic of the model is that it needs less training data to symmetrically adapt to the prediction conditions of different weather, and has high prediction accuracy in different weather conditions. This study aims to (1) select light intensity, ambient temperature and relative humidity, which are strictly related to photovoltaic output power as the input data; (2) apply wavelet soft threshold denoising to preprocess input data to reduce the noise contained in input data to symmetrically enhance the adaptability of the prediction model in different weather conditions; (3) improve the whale algorithm by using tent chaotic mapping, nonlinear disturbance and differential evolution algorithm; (4) apply the improved whale algorithm to optimize the Support Vector Machine model in order to improve the prediction accuracy of the prediction model. The experiment proves that the short-term prediction model of photovoltaic power based on symmetry concept achieves ideal accuracy in different weather. The systematic method for output power prediction of renewable energy is conductive to reducing the workload of predicting the output power and to promoting the application of clean energy and sustainable development.


2013 ◽  
Vol 291-294 ◽  
pp. 2164-2168 ◽  
Author(s):  
Li Tian ◽  
Qiang Qiang Wang ◽  
An Zhao Cao

With the characteristic of line loss volatility, a research of line loss rate prediction was imperatively carried out. Considering the optimization ability of heuristic algorithm and the regression ability of support vector machine, a heuristic algorithm-support vector machine model is constructed. Case study shows that, compared with other heuristic algorithms’, the search efficiency and speed of genetic algorithm are good, and the prediction model is with high accuracy.


2008 ◽  
Vol 24 (13) ◽  
pp. 1503-1509 ◽  
Author(s):  
Bobbie-Jo M. Webb-Robertson ◽  
William R. Cannon ◽  
Christopher S. Oehmen ◽  
Anuj R. Shah ◽  
Vidhya Gurumoorthi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document