Development and Validation of a Finite Element Model of Wear in Uhmwpe Liner Using Experimental Data From Hip Simulator Studies

Author(s):  
Nihal Kottan ◽  
Gowtham N H ◽  
Bikramjit Basu

Abstract The wear of acetabular liner is one of the key factors determining the longevity and osseointegration of Total Hip Replacement (THR) implants. The long-term experimental measurements of wear in THR components are time and cost-intensive. A finite element (FE) model of a 32 mm Ceramic on Polymer system consisting of ZTA (Zirconia-toughened Alumina) femoral head and UHMWPE (Ultrahigh molecular weight polyethylene) liner was developed to predict the dynamic wear response of the liner. Archard-Lancaster equation, consisting of surface contact pressure, wear rate, and sliding distance, was employed to predict the wear in the liner. The contact pressure and wear at the articulating surface were found to decrease over time. A new computational method involving 3D point clouds from the FE analyzed results were used to construct wear maps. The model was able to predict the linear wear with relative errors ranging from 9% to 36% over 2 million cycles when compared to the published results. The increasing error percentage occurring primarily from the use of a constant wear rate was reduced to a maximum of 17% by introducing a correction factor. Volumetric wear rate was predicted with a maximum relative error of 7% with the implementation of the correction factor. When the model was implemented to study liners of diameters ranging from 28 mm to 36 mm, the linear wear was seen to decrease with an increase in femoral head diameter, which is in agreement with the clinical data.

Author(s):  
Ming Zhang ◽  
Yanyao Jiang ◽  
Chu-Hwa Lee

A three-dimensional finite element (FE) model with the consideration of the helix angle of the threads was developed to simulate the second stage self-loosening of a bolted joint. The second stage self-loosening refers to the graduate reduction in clamping force due to the back-off of the nut. The simulations were conducted for two plates jointed by a bolt and a nut and the joint was subjected to transverse or shear loading. An M12×1.75 bolt was used. The application of the preload was simulated by using an orthogonal temperature expansion method. FE simulations were conducted for several loading conditions with different preloads and relative displacements between the two clamped plates. It was found that due to the application of the cyclic transverse load, micro-slip occurred between the contacting surfaces of the engaged threads of the bolt and the nut. In addition, a cyclic bending moment was introduced on the bolted joint. The cyclic bending moment resulted in an oscillation of the contact pressure on the contacting surfaces of the engaged threads. The micro-slip between the engaged threads and the variation of the contact pressure were identified to be the major mechanisms responsible for the self-loosening of a bolted joint. Simplified finite element models were developed that confirmed the mechanisms discovered. The major self-loosening behavior of a bolted joint can be properly reproduced with the FE model developed. The results obtained agree quantitatively with the experimental observations.


2019 ◽  
Vol 11 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Benedict Jain A.R. Tony ◽  
Masilamany S. Alphin

SummaryStudy aim: Interactions between the fingers and a handle can be analyzed using a finite element finger model. Hence, the biomechanical response of a hybrid human finger model during contact with varying diameter cylindrical handles was investigated numerically in the present study using ABAQUS/CAE.Materials and methods: The finite element index finger model consists of three segments: the proximal, middle, and distal phalanges. The finger model comprises skin, bone, subcutaneous tissue and nail. The skin and subcutaneous tissues were assumed to be non-linearly elastic and linearly visco-elastic. The FE model was applied to predict the contact interaction between the fingers and a handle with 10 N, 20 N, 40 N and 50 N grip forces for four different diameter handles (30 mm, 40 mm, 44mm and 50 mm). The model predictions projected the biomechanical response of the finger during the static gripping analysis with 200 incremental steps.Results: The simulation results showed that the increase in contact area reduced the maximal compressive stress/strain and also the contact pressure on finger skin. It was hypothesized in this study that the diameter of the handle influences the stress/strain and contact pressure within the soft tissue during the contact interactions.Conclusions: The present study may be useful to study the behavior of the finger model under the static gripping of hand-held power tools.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4199
Author(s):  
P. S. Tan ◽  
Ali Akhavan Farid ◽  
Atefeh Karimzadeh ◽  
Seyed Saeid Rahimian Koloor ◽  
Michal Petrů

The curvature correction factor is an important parameter in the stress calculation formulation of a helical extension spring, which describes the effect of spring wire curvature on the stress increase towards its inner radius. In this study, the parameters affecting the curvature correction factor were investigated through theoretical and numerical methods. Several finite element (FE) models of an extension spring were generated to obtain the distribution of the tensile stress in the spring. In this investigation, the hook orientation and the number of coils of the extension spring showed significant effects on the curvature correction factor. These parameters were not considered in the theoretical model for the calculation of the curvature correction factor, causing a deviation between the results of the FE model and the theoretical approach. A set of equations is proposed for the curvature correction factor, which relates both the spring index and the number of coils. These equations can be applied directly to the design of extension springs with a higher safety factor.


2006 ◽  
Vol 129 (2) ◽  
pp. 218-226 ◽  
Author(s):  
Ming Zhang ◽  
Yanyao Jiang ◽  
Chu-Hwa Lee

A three-dimensional finite element (FE) model with the consideration of the helix angle of the threads was developed to simulate the second stage self-loosening of a bolted joint. The second stage self-loosening refers to the gradual reduction in clamping force due to the back-off of the nut. The simulations were conducted for two plates jointed by a bolt and a nut and the joint was subjected to transverse or shear loading. An M12×1.75 bolt was used. The application of the preload was simulated by using an orthogonal temperature expansion method. FE simulations were conducted for several loading conditions with different preloads and relative displacements between the two clamped plates. It was found that due to the application of the cyclic transverse load, microslip occurred between the contacting surfaces of the engaged threads of the bolt and the nut. In addition, a cyclic bending moment was introduced on the bolted joint. The cyclic bending moment resulted in an oscillation of the contact pressure on the contacting surfaces of the engaged threads. The microslip between the engaged threads and the variation of the contact pressure were identified to be the major mechanisms responsible for the self-loosening of a bolted joint. Simplified finite element models were developed that confirmed the mechanisms discovered. The major self-loosening behavior of a bolted joint can be properly reproduced with the FE model developed. The results obtained agree quantitatively with the experimental observations.


2020 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Hai Li ◽  
Dashan Sui ◽  
Haiyi Qin ◽  
Ziming Zhang

Abstract Background: Developmental dysplasia of the hip (DDH) is the most common deformity of the lower extremity in children, and the etiology remains unclear. The biomechanical change during closed reduction (CR) focused on cartilage contact pressure (CCP) has not been studied. Thereby, we try to provide insight into biomechanical factors potentially responsible for CR treatment success and complications by using finite element analysis (FEA) for the first time.Methods: Finite element models of one patient with DDH were established based on the data of MRI scan on which cartilage contact pressure was measured. During CR, CCP between the femoral head and acetabulum in different abduction and flexion angles were tested to estimate the efficacy and potential risk factors of avascular necrosis (AVN) following CR.Results: A 3D reconstruction by the FEA method was performed on a sixteen-month-old girl with DDH on the right side. The acetabulum of the involved side showed a long, narrow, and "plate-shaped" deformity, whereas the femoral head was smaller and irregular compared with the contralateral side. With increased abduction angle, the stress of the posterior acetabulum increased significantly, and the stress on the lateral part of the femoral head increased as well. The changes of CCP in the superior acetabulum were not apparent during CR. There were no detectable differences in terms of pressure on the femoral head.Conclusions: Severe dislocation (IHDI grade III and IV) in children showed a high mismatch between the femoral head and acetabulum. Increased abduction angle corresponded with high contact pressure, which might relate to avascular necrosis, whereas increased flexion angle was not. Enhanced pressure on the lateral part of the femoral head might increase the risk of AVN.


2020 ◽  
Author(s):  
Yang Peng ◽  
Tian-Ye Lin ◽  
Jing-Li Xu ◽  
Hui-Yu Zeng ◽  
Da Chen ◽  
...  

Abstract BackgroundThe positional distribution and size of the weight-bearing area of femoral head in the standing position as well as the direct active surface of joint force can directly affect the result of finite element (FE) stress analysis, however in most studies related separate FE models of femur, the division of this area is vague, imprecise and un-individualized. The purpose of this study was to quantify the positional distribution and size of the weight-bearing area of femoral head in standing position by a set of simple methods, to realize individualized reconstruction of proximal femur FE model.MethodsFive adult volunteers were recruited for X-ray and CT examination in the same simulated bipedal standing position with a specialized patented device. We extracted these image data, calculated the 2D weight-bearing area on X-ray image, reconstructed the 3D model of proximal femur based on CT data, and registered them to realize the 2D weight-bearing area to 3D transformation as the quantified weight-bearing surface. One of the 3D models of proximal femur was randomly selected for finite element analysis (FEA), and we defined three different loading surfaces, and compared their FEA results.ResultsA total of 10 weight-bearing surfaces in 5 volunteers were constructed, they were mainly distributed on the dome and anterolateral of femoral head with crescent shape, in the range of 1,218.63mm2 - 1,871.06mm2. The results of FEA showed stress magnitude and distribution in proximal femur FE models among three different loading conditions were significant differences, the loading case with quantized weight-bearing area was more in accordance with the physical phenomenon of the hip.ConclusionThis study confirmed an effective FE modeling method of proximal femur, which can quantify weight-bearing area to define more reasonable load surface setting without increasing the actual modeling difficulty.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Behzad Vafaeian ◽  
Samer Adeeb ◽  
Marwan El-Rich ◽  
Dornoosh Zonoobi ◽  
Abhilash R. Hareendranathan ◽  
...  

Developmental dysplasia of the hip (DDH) in infants under 6 months of age is typically treated by the Pavlik harness (PH). During successful PH treatment, a subluxed/dislocated hip is spontaneously reduced into the acetabulum, and DDH undergoes self-correction. PH treatment may fail due to avascular necrosis (AVN) of the femoral head. An improved understanding of mechanical factors accounting for the success/failure of PH treatment may arise from investigating articular cartilage contact pressure (CCP) within a hip during treatment. In this study, CCP in a cartilaginous infant hip was investigated through patient-specific finite element (FE) modeling. We simulated CCP of the hip equilibrated at 90 deg flexion at abduction angles of 40 deg, 60 deg, and 80 deg. We found that CCP was predominantly distributed on the anterior and posterior acetabulum, leaving the superior acetabulum (mainly superolateral) unloaded. From a mechanobiological perspective, hypothesizing that excessive pressure inhibits growth, our results qualitatively predicted increased obliquity and deepening of the acetabulum under such CCP distribution. This is the desired and observed therapeutic effect in successful PH treatment. The results also demonstrated increase in CCP as abduction increased. In particular, the simulation predicted large magnitude and concentrated CCP on the posterior wall of the acetabulum and the adjacent lateral femoral head at extreme abduction (80 deg). This CCP on lateral femoral head may reduce blood flow in femoral head vessels and contribute to AVN. Hence, this study provides insight into biomechanical factors potentially responsible for PH treatment success and complications.


Author(s):  
Kondaiah Bommisetty ◽  
Kumar Narayanan

Conventional analytical and numerical methods for the mechanical properties of helical threads are relied on many assumptions and approximations and thus hardly yield satisfactory results. In this paper, an effective mesh generation scheme is used which can provide accurate helical thread model to analyse specific characteristics of stress concentrations and contact pressure distributions caused by the helical thread geometry. Sector model of bolted flange joint has been analysed for pretension alone and combination of pretension and axial load. Using the finite element (FE) model with accurate thread geometry with pretension, the thread root stresses, contact pressure along the helix and at the nut loaded surface in the circumferential direction have been studied. The peak stress occurs at the first engaged bolt thread root from nut loaded surface. This stress at the thread root gradually decreases towards the free face of the nut. The contact pressure at nut bearing surface varies in the circumferential direction because of the circumferential variation of the stiffness of engaged threads adjacent to the nut loaded surface. The axial load along the engaged threads gradually decreases from nut loaded surface to zero towards the free surface of the nut. Results from analysis with pretension and axial load indicate that the contact separation starts at the inner radius of flange and grows towards outer diameter of flange as the axial load is increased in the bolted flange joint. It is observed from the analyses that the load is shared by flanges when the external applied axial load is up to 15% of preload, and beyond this, bolt starts sharing external load. The maximum stress occurs at the first engaged bolt thread root. Most of the bolt failures are at the first engaged thread. The study suggests that it is necessary to consider threads in FE model to obtain accurate contact pressure, thread stress, stiffness and bolt load predictions. These critical observations provide insight for optimization of bolted flange joint to meet the structural requirements and weight optimisation.


2012 ◽  
Vol 463-464 ◽  
pp. 1285-1290
Author(s):  
Arsene Corneliu

The scope of this paper is to explore the input parameters of a Finite Element (FE) model of an active lower limb that are most influential in determining the size and the shape of the performance envelope of the kinematics and peak contact pressure of the knee tibial insert introduced during a Total Knee Replacement (TKR) surgery. The active lower limb FE model simulates the stair ascent and it provides a more complicated setup than the isolated TKR model which includes the femoral component and the tibial insert. It includes bones, TKR implant, soft tissues and applied forces. Two probabilistic methods are used together with the FE model to generate the performance envelopes and to explore the key parameters: the Monte Carlo Simulation Technique (MCST) and the Response Surface Method (RSM). It is investigated how the uncertainties in a reduced set of 22 input variables of the FE model affect the kinematics and peak contact pressure of the knee tibial insert. The kinematics is reported in the Grood and Suntay system, where all motion is relative to the femoral component of the TKR. Reported tibial component kinematics are tibio-femoral flexion angle, anterior-posterior and medial-lateral displacement, internal-external and varus-valgus rotation (i.e. abduction-adduction), while the reported patella kinematics are patella-femoral flexion angle, medial-lateral shift and medial-lateral tilt. Tibio-femoral and patella-femoral contact pressures are also of interest. Following a sensitivity analysis, a reduced set of input variables is derived, which represent the set of key parameters which influence the performance envelopes. The findings of this work are paramount to the orthopedic surgeons who may want to know the key parameters that can influence the performance of the TKR for a given human activity.


Sign in / Sign up

Export Citation Format

Share Document