dynamic wear
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 17)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Nihal Kottan ◽  
Gowtham N H ◽  
Bikramjit Basu

Abstract The wear of acetabular liner is one of the key factors determining the longevity and osseointegration of Total Hip Replacement (THR) implants. The long-term experimental measurements of wear in THR components are time and cost-intensive. A finite element (FE) model of a 32 mm Ceramic on Polymer system consisting of ZTA (Zirconia-toughened Alumina) femoral head and UHMWPE (Ultrahigh molecular weight polyethylene) liner was developed to predict the dynamic wear response of the liner. Archard-Lancaster equation, consisting of surface contact pressure, wear rate, and sliding distance, was employed to predict the wear in the liner. The contact pressure and wear at the articulating surface were found to decrease over time. A new computational method involving 3D point clouds from the FE analyzed results were used to construct wear maps. The model was able to predict the linear wear with relative errors ranging from 9% to 36% over 2 million cycles when compared to the published results. The increasing error percentage occurring primarily from the use of a constant wear rate was reduced to a maximum of 17% by introducing a correction factor. Volumetric wear rate was predicted with a maximum relative error of 7% with the implementation of the correction factor. When the model was implemented to study liners of diameters ranging from 28 mm to 36 mm, the linear wear was seen to decrease with an increase in femoral head diameter, which is in agreement with the clinical data.


2021 ◽  
Vol 16 (2) ◽  
pp. 200
Author(s):  
Rusnaldy Rusnaldy ◽  
Yusuf Umardani ◽  
Diva Tsamara Putra ◽  
Jovian Bernard

<p><em>Austempered ductile iron (ADI) is a difficult material for machining, </em><em>even though ADI is believed to have several advantages such as strength, ductility, high toughness, fatigue resistance, good dynamic wear resistance, has a good strength-to-weight ratio, easy to manufacture  and easy to cast that causes it to be widely used in various applications.  </em><em>This study investigates the effect of milling parameters on surface rougness and chip thickness ratio on milling of ADI. To produce ADI, ductile irons  were first austenitized in furnace at 900<sup>o</sup>C for 1 hour and then they were quenched in salt bath at 375<sup>o</sup>C for 1 hour. The work material was machined with uncoated carbide tool. The tool was 20 mm in diameter. The cutting experiments were carried out in the dry mode. The feed was varied from 0.05 to 0.1 mm/tooth for cutting speed ranging from 15 m/min to 25 mm/min and depth of cut ranging from 0.1 mm to 0.3 mm. The surface roughness was measured using the Mitutoyo SJ-201, surface roughness machine. The chip thickness was measured using software Image J from the photograph produced by digital microscope endoscope. The results show that connected and loose chips were produced. Long and continuous chips were not found in this study. The effects of cutting speeds, feeds and depth of cut on surface roughness and chip thickness ratio  are reported in this paper</em><em></em></p>


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chen Li ◽  
Heng Wen ◽  
Kun Chen ◽  
Longxiao Zhang ◽  
Ting Xie ◽  
...  

Purpose This paper aims to develop a Mini-Tribometer for in-situ observation of subsurface. Design/methodology/approach To observe the change of the microstructure during wear in real time, an in-situ observation mini-tribometer was developed according to the requirements of the basic frictional experiments and carried out the verification experiments. Findings The subsurface images and the tribological data obtained from the mini-tribometer clearly show that the graphite in the matrix moves to the surface and takes part in lubrication mainly in the form of extrusion and peeling off, and the migration of graphite in the copper-based composite to the frictional interface to act as lubricant and to result in the decrease of the friction coefficient. The experimental results of the developed tribometer are accurate, which can provide important references for further research on the wear mechanism of materials. Originality/value The developed in-situ observation mini-tribometer can be used to observe the dynamic wear mechanism of the frictional pairs, which is very important for optimization of material design and tribological performances.


2021 ◽  
Vol 11 (11) ◽  
pp. 5011
Author(s):  
Yuanxing Huang ◽  
Zhiyuan Lu ◽  
Wei Dai ◽  
Weifang Zhang ◽  
Bin Wang

In manufacturing, cutting tools gradually wear out during the cutting process and decrease in cutting precision. A cutting tool has to be replaced if its degradation exceeds a certain threshold, which is determined by the required cutting precision. To effectively schedule production and maintenance actions, it is vital to model the wear process of cutting tools and predict their remaining useful life (RUL). However, it is difficult to determine the RUL of cutting tools with cutting precision as a failure criterion, as cutting precision is not directly measurable. This paper proposed a RUL prediction method for a cutting tool, developed based on a degradation model, with the roughness of the cutting surface as a failure criterion. The surface roughness was linked to the wearing process of a cutting tool through a random threshold, and accounts for the impact of the dynamic working environment and variable materials of working pieces. The wear process is modeled using a random-effects inverse Gaussian (IG) process. The degradation rate is assumed to be unit-specific, considering the dynamic wear mechanism and a heterogeneous population. To adaptively update the model parameters for online RUL prediction, an expectation–maximization (EM) algorithm has been developed. The proposed method is illustrated using an example study. The experiments were performed on specimens of 7109 aluminum alloy by milling in the normalized state. The results reveal that the proposed method effectively evaluates the RUL of cutting tools according to the specified surface roughness, therefore improving cutting quality and efficiency.


2021 ◽  
pp. 152808372199377
Author(s):  
SH Eryuruk ◽  
H Gidik ◽  
V Koncar ◽  
F Kalaoglu ◽  
X Tao ◽  
...  

Under dynamic wear conditions, moisture management and heat transfer behaviour of clothing between the human body and its environment are very important attributes for comfort and performance. Especially considering heavy works like firefighting, it is important to analyse liquid moisture management and thermal comfort properties of fabrics that influence moisture sensation and personnel comfort feeling significantly. This study mainly investigates thermal comfort and moisture management properties of a firefighter clothing with a new fire resistant underwear. Analysing single layer fabric (underwear, outer shell, moisture barrier and thermal barrier) performance properties, together with their three-layered and four-layered combinations gives a better understanding of comfort and protective performance. For characterizing the fabric structures, weight, thickness, FTIR analysis and SEM-EDX tests were conducted. Heat and moisture transfer properties were measured with limited flame spread, thermal resistance (skin model), water vapour transmission rate (dish method), thermal conductivity, air permeability, thermal diffusion, water vapour resistance, moisture management transfer (MMT) and water vapour permeability tests.


Author(s):  
Н.Г. Серёгин ◽  
В.Г. Исаев

Описана конструкция экспериментальной установки для проведения сравнительных испытаний износостойкости различных пар трения конструкционных материалов. Представлены результаты сравнительных испытаний износостойкости двух пар трения при статическом нагружении и определена лучшая из них. Приведены результаты испытаний износостойкости лучшей пары трения при динамическом нагружении. Разработана математическая модель динамического изнашивания лучшей пары трения конструкционных материалов. The design of an experimental installation for conducting comparative tests of the wear resistance of various friction pairs of structural materials is described. The results of comparative tests of the wear resistance of two friction pairs under static loading are presented and the best of them is determined. The results of tests of the wear resistance of the best friction pair under dynamic loading are presented. A mathematical model of dynamic wear of the best friction pair of structural materials is developed.


Sign in / Sign up

Export Citation Format

Share Document