Three-dimensional simulation analysis of the effect of hydrous ethanol and exhaust gas recirculation on gasoline direct injection engine combustion and emissions

2021 ◽  
pp. 1-22
Author(s):  
Xiuyong Shi ◽  
Yixiao Jiang ◽  
Qiwei Wang ◽  
Weiwei Qian ◽  
Rong Huang ◽  
...  

Abstract To analyze the influence of hydrous ethanol on the performance of the direct injection engine, the three-dimensional simulation is carried out by using CONVERGE software coupled with the combustion mechanism of hydrous ethanol gasoline and the soot model. The combustion and soot generation characteristics of a direct injection gasoline engine burning aqueous ethanol gasoline using exhaust gas recirculation (EGR) technology were investigated. It was found that the increase of the blending ratio of the hydrous ethanol can accelerate the flame propagation speed, shorten the combustion duration, and improve the combustion isovolume. The nucleation and growth of soot are jointly controlled by PAHs and the small molecular components such as C2H2. The oxygen content properties and high reactive OH of the aqueous ethanol-containing gasoline inhibit soot formation. Compared with pure gasoline, the carbon soot precursor mass was reduced by 60%, 54.5%, 73.3% and 52.4% for 20% anhydrous ethanol blended with gasoline, A1, A2, A3 and A4, respectively, and the carbon soot mass was reduced by 63.6% and the carbon soot volume density was reduced by 40%. The introduction of EGR exhaust reduces the burning rate and leads to an increase in the production of Carbon monoxide, hydrocarbon, and soot. However, the combination of EGR with aqueous ethanol gasoline can significantly improve the engine combustion environment, significantly reducing soot and PAHs concentrations. The impact of EGR also includes the ability to reduce combustion chamber temperatures and reduce NOx emissions from aqueous ethanol gasoline by 75%.

2015 ◽  
Vol 18 (4) ◽  
pp. 48-54
Author(s):  
Khai Le Duy Nguyen ◽  
Tri Minh Nguyen

This paper presents a research on the influence of exhaust gas recirculation (EGR) on performance and emissions of direct injection diesel engine VIKYNO RV125-2 using three-dimensional CFD code KIVA-3V. In this study, the engine runs at 2400 rpm, 80% nominal load, and EGR concentration is changed from 0% to 40%. Research results indicate that with 20% EGR, the engine power is reduced 3,16%, while the concentrations of both NOx and soot are reduced 12,11% and 67,1%, respectively.


2020 ◽  
pp. 146808742096229
Author(s):  
Dominic Parsons ◽  
Simon Orchard ◽  
Nick Evans ◽  
Umud Ozturk ◽  
Richard Burke ◽  
...  

Exhaust gas recirculation (EGR) is proven as a valuable technology for controlling knock whilst maintaining lambda one operation, and is also capable of providing efficiency gains at low load. Despite this few studies in the literature address the question of EGR composition effects, namely whether the EGR gas is sourced from before or after the catalyst, and this remains an area which is often overlooked whilst investigating EGR performance. This paper demonstrates a novel method combining experiment air-path emulation and in-depth data processes to compare the effect of EGR catalysis on the angle of knock onset in a 1L GDI engine. Since initial temperature and pressure have a significant impact on knocking behaviour, an artificial boosting rig replaced the turbomachinery. This enabled fine control over the engine boundary conditions to ensure parity between the catalysed and un-catalysed cases. To overcome the difficulty of comparing stochastic phenomena in an inherently variable dataset, a pairing method was combined with Shahlari and Ghandhi’s angle of knock onset determination method to assess the effects of EGR composition on knock onset for EGR rates ranging from 9% to 18%. The air path emulation system stabilised the engine combustion to provide a suitably rich dataset for analysing knock using the pairing method. Catalysed EGR improved the mean knock onset angle by 0.55 CAD, but due to the inherent variability in cylinder pressure data this only equated to a 58.3% chance of a later knock onset angle for catalysed EGR in any given pair of comparative cycles.


Author(s):  
James Sevik ◽  
Thomas Wallner ◽  
Michael Pamminger ◽  
Riccardo Scarcelli ◽  
Dan Singleton ◽  
...  

The efficiency improvement and emissions reduction potential of lean and exhaust gas recirculation (EGR)-dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nanosecond pulses and its performance compared to a conventional transistorized coil ignition (TCI) system operated on an automotive, gasoline direct-injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar indicated mean effective pressure (IMEP), where dilution tolerance is particularly critical to improving efficiency and emission performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ = 1.55 to 1.7) with the low-energy transient plasma ignition system.


2015 ◽  
Vol 787 ◽  
pp. 697-701 ◽  
Author(s):  
R. Senthil Kumar ◽  
M. Loganathan

Hydrogen is a zero emission alternative gaseous fuel generally used in internal combustion engine with single fuel or duel fuel mode. In this work the Hydrogen is introduced in inlet manifold in addition to main diesel fuel used in the engine. The different flow rate of hydrogen fuel is used in this work are from 2 lpm to 10 lpm at 2 bar pressure. Here the single cylinder, direct injection, diesel engine with 1500 rpm rated speed is used for test. In addition to hydrogen, the exhaust gas also introduced in the inlet manifold with various percentages namely 10% and 20%. The engine is loaded with eddy current dynamometer .The engine performance and emissions of various combination of hydrogen flow rate and exhaust gas recirculation (EGR) were analyzed. The result showed that in 8 lpm hydrogen flow rate without EGR the BTE increased and BSFC decreased. At the same condition the HC, CO emissions reduced and NOx emission is increased. But NOx emission with 10% and 20% EGR is reduced.


Sign in / Sign up

Export Citation Format

Share Document