Nonlinear behavior of Helmholtz resonator with a compliant wall for low frequency, broadband noise control

2021 ◽  
pp. 1-29
Author(s):  
Maya Pishvar ◽  
Ryan L Harne

Abstract Low frequency sound attenuation is often pursued using Helmholtz resonators (HRs). The introduction of a compliant wall around the acoustic cavity results in a two-degree-of-freedom (2DOF) system capable of more broadband sound absorption. In this study, we report the amplitude-dependent dynamic response of a compliant walled HR and investigate the effectiveness of wall compliance to improve the absorption of sound in linear and nonlinear regimes. The acoustic-structure interactions between the conventional Helmholtz resonator and the compliant wall result in non-intuitive responses when acted on by nonlinear amplitudes of excitation pressure. This paper formulates and studies a reduced order model to characterize the nonlinear dynamic response of the 2DOF HR with a compliant wall compared to that of a conventional rigid HR. Validated by experimental evidence, the modeling framework facilitates an investigation of strategies to achieve broadband sound attenuation, including by selection of wall material, wall thickness, geometry of the HR, and other parameters readily tuned by system design. The results open up new avenues for the development of efficient acoustic resonators exploiting the deflection of a compliant wall for suppression of extreme noise amplitudes.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andrew McKay ◽  
Ian Davis ◽  
Jack Killeen ◽  
Gareth J. Bennett

Abstract The attenuation of low-frequency broadband noise in a light, small form-factor is an intractable challenge. In this paper, a new technology is presented which employs the highly efficient visco-thermal loss mechanism of a micro-perforated plate (MPP) and successfully lowers its frequency response by combining it with decorated membrane resonators (DMR). Absorption comes from the membranes but primarily from the MPP, as the motion of the two membranes causes a pressure differential across the MPP creating airflow through the perforations. This combination of DMR and MPP has led to the Segmented Membrane Sound Absorber (SeMSA) design, which is extremely effective at low-frequency broadband sound absorption and which can achieve this at deep sub-wavelength thicknesses. The technology is compared to other absorbers to be found in the literature and the SeMSA outperforms them all in either the 20–1000 Hz or 20–1200 Hz range for depths of up to 120 mm. This was verified through analytical, finite element and experimental analyses.


2021 ◽  
Vol 69 (4) ◽  
pp. 351-363
Author(s):  
Jhalu Gorain ◽  
Chandramouli Padmanabhan

Achieving broadband noise attenuation at low frequencies is still a significant challenge. Helmholtz resonators offer good low-frequency noise attenuation but are effective only over a narrow band; the cavity volume required at these frequencies is also larger. This article proposes a new broadband acoustic metamaterial (AMM) absorber, which uses polyurethane (PU) foam embedded with small-size resonators tuned to different frequencies. The AMM design is achieved in three phases: (1) develop a transfer-matrix-based one-dimensionalmodel for a resonator with intruded neck; (2) use this model to develop a novel band broadeningmethod, to select appropriate resonators tuned to different frequencies; and (3) construct a unit cell metamaterial embedded with an array of resonators into PU foam. A small-size resonator tuned to 415 Hz is modified, by varying the intrusion lengths of the neck, to achieve natural frequencies ranging from 210 to 415 Hz. Using the band broadening methodology, 1 unit cell metamaterial is constructed; its effectiveness is demonstrated by testing in an acoustic impedance tube. The broadband attenuation characteristics of the constructed unit cell metamaterial are shown to match well with the predicted results. To demonstrate further the effectiveness of the idea, a metamaterial is formed using 4 periodic unit cells and is tested in a twin room reverberation chamber. The transmission loss is shown to improve significantly, at low frequencies, due to the inclusion of the resonators.


Author(s):  
Qingxuan Liang ◽  
Yutao Wu ◽  
Peiyao Lv ◽  
Jin He ◽  
Fuyin Ma ◽  
...  

2021 ◽  
pp. 101348
Author(s):  
Zhenqian Xiao ◽  
Penglin Gao ◽  
Dongwei Wang ◽  
Xiao He ◽  
Linzhi Wu

1987 ◽  
Vol 58 (3) ◽  
pp. 543-561 ◽  
Author(s):  
J. C. Chan ◽  
T. C. Yin ◽  
A. D. Musicant

1. We studied cells in the central nucleus of the inferior colliculus of the cat that were sensitive to interaural time delays (ITDs) in order to evaluate the influence of the stimulus spectrum of noise signals. Stimuli were sharply filtered low-, high-, and band-pass noise signals whose cutoff frequencies and bandwidths were systematically varied. The responses to ITDs of these noise signals were compared with responses obtained to ITDs of broadband noise and pure tones. 2. The discharge rate in response to band-pass noise as a function of ITD was usually a cyclic function with decreasing peak amplitudes at longer ITDs. The reciprocal of the mean interval between adjacent peaks indicated how rapidly the response rate varied with ITD and was termed the response frequency (RF). This RF was approximately equal to the median frequency of the stimulus spectrum filtered by the cell's sync-rate curve, which was the product of the synchronization to interaural phase and the discharge rate plotted against frequency. This suggests that the RF was determined by all the spectral components in the stimulus that fell within the frequency range in which the cell's response was synchronized. The contribution of each component was proportional to the sync-rate for that frequency. 3. The central peak of the ITD function usually fell within the physiological range of ITDs (+/- 400 microseconds). The location of this peak did not vary significantly with changes in stimulus spectrum by comparison with responses to tones of different frequency. Its shape also remained constant, except for a decrease in width when high-frequency components within the range of the sync-rate curve were added to the stimulus. A few cells responded with a minimal discharge instead of a maximal near-zero ITD, and this central minimum had similar properties as the central peak. The amplitude of the secondary peaks of the ITD function decreased as the stimulus bandwidth that overlapped the sync-rate curve broadened. 4. The sum of the ITD functions to two band-pass signals was similar to that of a broadband signal whose spectrum was composed of the sum of the band-pass spectra. 5. From these binaural responses we could make inferences about the response characteristics of the monaural inputs to binaural neurons. We then verified these predictions by studying responses of low-frequency trapezoid body fibers to band-pass noises.


2010 ◽  
Vol 64 (3) ◽  
Author(s):  
Michal Kvasnica ◽  
Martin Herceg ◽  
Ľuboš Čirka ◽  
Miroslav Fikar

AbstractThis paper presents a case study of model predictive control (MPC) applied to a continuous stirred tank reactor (CSTR). It is proposed to approximate nonlinear behavior of a plant by several local linear models, enabling a piecewise affine (PWA) description of the model used to predict and optimize future evolution of the reactor behavior. Main advantage of the PWA model over traditional approaches based on single linearization is a significant increase of model accuracy which leads to a better control quality. It is also illustrated that, by adopting the PWA modeling framework, MPC strategy can be implemented using significantly less computational power compared to nonlinear MPC setups.


2018 ◽  
Vol 8 (10) ◽  
pp. 1923
Author(s):  
Martin Dannemann ◽  
Michael Kucher ◽  
Eckart Kunze ◽  
Niels Modler ◽  
Karsten Knobloch ◽  
...  

In aero engines, noise absorption is realised by acoustic liners, e.g., Helmholtz resonator (HR) liners, which often absorb sound only in a narrow frequency range. Due to developments of new engine generations, an improvement of overall acoustic damping performance and in particular more broadband noise absorption is required. In this paper, a new approach to increase the bandwidth of noise absorption for HR liners is presented. By replacing rigid cell walls in the liner’s honeycomb core structure by flexible polymer films, additional acoustic energy is dissipated. A manufacturing technology for square honeycomb cores with partially flexible walls is described. Samples with different flexible wall materials were fabricated and tested. The acoustic measurements show more broadband sound absorption compared to a reference liner with rigid walls due to acoustic-structural interaction. Manufacturing-related parameters are found to have a strong influence on the resulting vibration behaviour of the polymer films, and therefore on the acoustic performance. For future use, detailed investigations to ensure the liner segments compliance with technical, environmental, and life-cycle requirements are needed. However, the results of this study show the potential of this novel liner concept for noise reduction in future aero-engines.


2020 ◽  
Vol 11 (2) ◽  
pp. 155-162
Author(s):  
A. F. Sabitov ◽  
I. A. Safina

The spectral method for establishing dynamic response of measuring instruments basically requires determining the amplitude spectrum of the signal in its informative part that includes the amplitude spectrum at zero frequency. The operating frequency range of existing low-frequency spectrum analyzers is above zero frequency that leads to an uncertainty in dynamic response of measuring instruments determined by the spectral method. The purpose of this paper is to develop a program for calculating the signal amplitude spectrum, starting from zero frequency, to implement a spectral method for determining the dynamic response of measuring instruments on computers equipped with the MatLab package.To implement the spectral method for determining the dynamic response of measuring instruments, we developed a program in the MatLab 2013b environment that determines the signal amplitude spectrum from zero Hertz. The program reads the source data from Excel tables and presents the calculated amplitude spectrum as a chart and a report table.It is shown that the developed program calculates the signal amplitude spectrum with a standard deviation of not more than 3.4 % in the frequency range of 0 to 10 rad/s. The calculated amplitude spectrum allows determining the time constant of first-order aperiodic measuring instruments with an uncertainty of not more than 0.166 % at any noise level, if their frequencies are outside the information part of the spectrum.We demonstrated the claimed advantage of the spectral method for determining dynamic response using the developed program by the example of a high-frequency noise in the transient response of some measuring instruments.


Sign in / Sign up

Export Citation Format

Share Document