Systematic Geometric Error Modeling and Compensation of a Five-Axis CNC Machine Tool

2013 ◽  
Vol 303-306 ◽  
pp. 627-631 ◽  
Author(s):  
Zhen Yu Han ◽  
Hong Yu Jin ◽  
Yu Long Liu ◽  
Hong Ya Fu

Error compensation can improve the accuracy of machine tools effectively. Among the error sources affecting the accuracy of CNC machine tool, geometric error is always set as a key performance criterion. This paper summarizes several methods of geometric error modeling and reviews the characteristics of different methods. Furthermore, available methods for measuring geometric errors have been reviewed also based on the advanced instruments. This work aims at enhancing the efficiency of error detection and give a perspective for the application of error compensation in the future.


2013 ◽  
Vol 420 ◽  
pp. 85-91 ◽  
Author(s):  
Li Gang Cai ◽  
Qiu Nan Feng ◽  
Qiang Cheng ◽  
Pei Hua Gu ◽  
Cui Zhang

The precision model of the 5-axis CNC machine tool can be built up based on the theory of kinematics for multi-body system (MBS). And then based on the precision model, the sensitivity analysis established with matrix differential is a method of identifying geometric error parameters for machine tool. And the geometric error factors of major parts that have relatively significant influence on comprehensive spatial error of the machine tool are identified. Finally, important theoretical basis for improving the titanium alloy Five-axis CNC machining center reasonably and for the error compensation can be provided.


Author(s):  
Du Zhengchun ◽  
Wu Jian ◽  
Yang Jianguo

The influence of component errors on the final error is a key point of error modeling of computer numerical control (CNC) machine tool. Nevertheless, the mechanism by which the errors in mechanical parts accumulate to result in the component errors and then impact the final error of CNC machine tool has not been identified; the identification of this mechanism is highly relevant to precision design of CNC machine. In this study, the error modeling based on the Jacobian-torsor theory is applied to determine how the fundamental errors in mechanical parts influence and accumulate to the comprehensive error of single-axis assembly. First, a brief introduction of the Jacobian-torsor theory is provided. Next, the Jacobian-torsor model is applied to the error modeling of a single-axis assembly in a three-axis machine center. Furthermore, the comprehensive errors of the single-axis assembly are evaluated by Monte Carlo simulation based on the synthesized error model. The accuracy and efficiency of the Jacobian-torsor model are verified through a comparison between the simulation results and the measured data from a batch of similar vertical machine centers. Based on the Jacobian-torsor model, the application of quantitative sensitivity analysis of single-axis assembly is investigated, along with the analysis of key error sources to the synthetical error ranges of the single-axis assembly. This model provides a comprehensive method to identify the key error source of the single-axis assembly and has the potential to enhance the tolerance/error allocation of the single axis and the whole machine tool.


2012 ◽  
Vol 271-272 ◽  
pp. 493-497
Author(s):  
Wei Qing Wang ◽  
Huan Qin Wu

Abstract: In order to determine that the effect of geometric error to the machining accuracy is an important premise for the error compensation, a sensitivity analysis method of geometric error is presented based on multi-body system theory in this paper. An accuracy model of five-axis machine tool is established based on multi-body system theory, and with 37 geometric errors obtained through experimental verification, key error sources affecting the machining accuracy are finally identified by sensitivity analysis. The analysis result shows that the presented method can identify the important geometric errors having large influence on volumetric error of machine tool and is of help to improve the accuracy of machine tool economically.


Sign in / Sign up

Export Citation Format

Share Document