Implementation and Validation of a New Soot Model and Application to Aeroengine Combustors

Author(s):  
M. Balthasar ◽  
F. Mauss ◽  
M. Pfitzner ◽  
A. Mack

The modelling of soot formation and oxidation under industrially relevant conditions has made significant progress in recent years. Simplified models introducing a small number of transport equations into a CFD code have been used with some success in research configurations simulating a reciprocating diesel engine. Soot formation and oxidation in the turbulent flow is calculated on the basis of a laminar flamelet library model. The gas phase reactions are modelled with a detailed mechanism for the combustion of heptane containing 89 species and 855 reactions developed by Frenklach and Warnatz and revised by Mauss. The soot model is divided into gas phase reactions, the growth of polycyclic aromatic hydrocarbons (PAH) and the processes of particle inception, heterogeneous surface growth, oxidation and condensation. The first two are modelled within the laminar flamelet chemistry, while the soot model deals with the soot particle processes. The time scales of soot formation are assumed to be much larger than the turbulent time scales. Therefore rates of soot formation are tabulated in the flamelet libraries rather than the soot volume fraction itself. The different rates of soot formation, e.g. particle inception, surface growth, fragmentation and oxidation, computed on the basis of a detailed soot model, are calculated in the mixture fraction / scalar dissipation rate space and further simplified by fitting them to simple analytical functions. A transport equation for the mean soot mass fraction is solved in the CFD-code. The mean rate in this transport equation is closed with the help of presumed probability density functions for the mixture fraction and the scalar dissipation rate. Heat loss due to radiation can be taken into account by including a heat loss parameter in the flamelet calculations describing the change of enthalpy due to radiation, but was not used for the results reported here. The soot model was integrated into an existing commercial CFD code as a post-processing module to existing combustion CFD flow fields and is very robust with high convergence rates. The model is validated with laboratory flame data and using a realistic 3-D BMW Rolls-Royce combustor configuration, where test data at high pressure are available. Good agreement between experiment and simulation is achieved for laboratory flames, whereas soot is overpredicted for the aeroengine combustor configuration by 1–2 orders of magnitude.

2000 ◽  
Vol 124 (1) ◽  
pp. 66-74 ◽  
Author(s):  
M. Balthasar ◽  
F. Mauss ◽  
M. Pfitzner ◽  
A. Mack

The modeling of soot formation and oxidation under industrially relevant conditions has made significant progress in recent years. Simplified models introducing a small number of transport equations into a CFD code have been used with some success in research configurations simulating a reciprocating diesel engine. Soot formation and oxidation in the turbulent flow is calculated on the basis of a laminar flamelet library model. The gas phase reactions are modeled with a detailed mechanism for the combustion of heptane containing 89 species and 855 reactions developed by Frenklach and Warnatz and revised by Mauss. The soot model is divided into gas phase reactions, the growth of polycyclic aromatic hydrocarbons (PAH) and the processes of particle inception, heterogeneous surface growth, oxidation, and condensation. The first two are modeled within the laminar flamelet chemistry, while the soot model deals with the soot particle processes. The time scales of soot formation are assumed to be much larger than the turbulent time scales. Therefore rates of soot formation are tabulated in the flamelet libraries rather than the soot volume fraction itself. The different rates of soot formation, e.g., particle inception, surface growth, fragmentation, and oxidation, computed on the basis of a detailed soot model, are calculated in the mixture fraction/scalar dissipation rate space and further simplified by fitting them to simple analytical functions. A transport equation for the mean soot mass fraction is solved in the CFD code. The mean rate in this transport equation is closed with the help of presumed probability density functions for the mixture fraction and the scalar dissipation rate. Heat loss due to radiation can be taken into account by including a heat loss parameter in the flamelet calculations describing the change of enthalpy due to radiation, but was not used for the results reported here. The soot model was integrated into an existing commercial CFD code as a post-processing module to existing combustion CFD flow fields and is very robust with high convergence rates. The model is validated with laboratory flame data and using a realistic three-dimensional BMW Rolls-Royce combustor configuration, where test data at high pressure are available. Good agreement between experiment and simulation is achieved for laboratory flames, whereas soot is overpredicted for the aeroengine combustor configuration by 1–2 orders of magnitude.


2019 ◽  
Vol 208 ◽  
pp. 330-350 ◽  
Author(s):  
Hernan Olguin ◽  
Arne Scholtissek ◽  
Sebastian Gonzalez ◽  
Felipe Gonzalez ◽  
Matthias Ihme ◽  
...  

2017 ◽  
Vol 830 ◽  
pp. 300-325 ◽  
Author(s):  
Hiroyuki Abe ◽  
Robert Anthony Antonia

Integration across a fully developed turbulent channel flow of the transport equations for the mean and turbulent parts of the scalar dissipation rate yields relatively simple relations for the bulk mean scalar and wall heat transfer coefficient. These relations are tested using direct numerical simulation datasets obtained with two isothermal boundary conditions (constant heat flux and constant heating source) and a molecular Prandtl number Pr of 0.71. A logarithmic dependence on the Kármán number $h^{+}$ is established for the integrated mean scalar in the range $h^{+}\geqslant 400$ where the mean part of the total scalar dissipation exhibits near constancy, whilst the integral of the turbulent scalar dissipation rate $\overline{\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}}$ increases logarithmically with $h^{+}$. This logarithmic dependence is similar to that established in a previous paper (Abe & Antonia, J. Fluid Mech., vol. 798, 2016, pp. 140–164) for the bulk mean velocity. However, the slope (2.18) for the integrated mean scalar is smaller than that (2.54) for the bulk mean velocity. The ratio of these two slopes is 0.85, which can be identified with the value of the turbulent Prandtl number in the overlap region. It is shown that the logarithmic $h^{+}$ increase of the integrated mean scalar is intrinsically associated with the overlap region of $\overline{\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}}$, established for $h^{+}$ (${\geqslant}400$). The resulting heat transfer law also holds at a smaller $h^{+}$ (${\geqslant}200$) than that derived by assuming a log law for the mean temperature.


1997 ◽  
Vol 344 ◽  
pp. 155-180 ◽  
Author(s):  
CHARLES G. SPEZIALE ◽  
THOMAS B. GATSKI

The modelling of anisotropies in the dissipation rate of turbulence is considered based on an analysis of the exact transport equation for the dissipation rate tensor. An algebraic model is systematically derived using integrity bases methods and tensor symmetry properties. The new model differs notably from all previously proposed models in that it depends nonlinearly on the mean velocity gradients. This gives rise to a transport equation for the scalar dissipation rate that is of the same general form as the commonly used model with one major exception: the coefficient of the production term is dependent on the invariants of both the rotational and irrotational strain rates. The relationship between the new model and other recently proposed models is examined in detail. Some basic tests and applications of the model are also provided along with a discussion of the implications for turbulence modelling.


Sign in / Sign up

Export Citation Format

Share Document