Influence of Cross-Flow Induced Swirl and Impingement on Heat Transfer in a Two-Pass Channel Connected by Two Rows of Holes

Author(s):  
Gautam Pamula ◽  
Srinath V. Ekkad ◽  
Sumanta Acharya

Detailed heat transfer distributions are presented inside a two-pass coolant square channel connected by two rows of holes on the divider walls. The enhanced cooling is achieved by a combination of impingement and crossflow-induced swirl. Three configurations are examined where the cross flow is generated from one coolant passage to the adjoining coolant passage through a series of straight and angled holes and a two-dimensional slot placed along the dividing wall. The holes/slots deliver the flow from one passage to another typically achieved in a conventional design by a 180° U-bend. Heat transfer distributions will be presented on the sidewalls of the passages. A transient liquid crystal technique is applied to measure the detailed heat transfer coefficient distributions inside the passages. Results for the three hole supply cases are compared with the results from the traditional 180° turn passage for three channel flow Reynolds numbers ranging between 10000 and 50000. Results show that the new feed system, from first pass to second pass using crossflow injection holes, produce significantly higher Nusselt numbers on the second pass walls. The heat transfer enhancement in the second pass of these channels are as high as 2–3 times greater than that obtained in the second pass for a channel with a 180° turn. Results are also compared with channels that have only one row of discharge holes.

2000 ◽  
Vol 123 (2) ◽  
pp. 281-287 ◽  
Author(s):  
Gautam Pamula ◽  
Srinath V. Ekkad ◽  
Sumanta Acharya

Detailed heat transfer distributions are presented inside a two-pass coolant square channel connected by two rows of holes on the divider walls. The enhanced cooling is achieved by a combination of impingement and crossflow-induced swirl. Three configurations are examined where the crossflow is generated from one coolant passage to the adjoining coolant passage through a series of straight and angled holes and a two-dimensional slot placed along the dividing wall. The holes/slots deliver the flow from one passage to another. This is typically achieved in a conventional design by a 180 deg U-bend. Heat transfer distributions will be presented on the sidewalls of the passages. A transient liquid crystal technique is applied to measure the detailed heat transfer coefficient distributions inside the passages. Results for the three-hole supply cases are compared with the results from the traditional 180 deg turn passage for three channel flow Reynolds numbers ranging between 10,000 and 50,000. Results show that the new feed system, from first pass to second pass using crossflow injection holes, produces significantly higher Nusselt numbers on the second pass walls. The heat transfer enhancements in the second pass of these channels are as much as two to three times greater than that obtained in the second pass for a channel with a 180 deg turn. Results are also compared with channels that have only one row of discharge holes.


1999 ◽  
Author(s):  
Srinath V. Ekkad ◽  
Gautam Pamula ◽  
Sumanta Acharya

Abstract Detailed heat transfer distributions are presented inside a two-pass coolant channel with crossflow-induced swirl and impingement. The crossflow is generated from one coolant passage to the adjoining coolant passage through a series of straight or angled holes along the dividing wall. The communicating holes provide for the flow turning from one passage to another typically achieved in a conventional design by a 180° U-bend. The holes direct the flow laterally from one passage to another, and depending on the injection angle, cause impingement and generate swirl. The heat transfer enhancement in the second pass is achieved by the combination of impingement and crossflow-induced swirl. Heat transfer distributions are presented on the sidewalls of the passages. Three different hole configurations are tested for three flow channel Reynolds numbers (Re = 10000–50000). The hole configurations were varied by angle of delivery and location on the divider wall. A transient liquid crystal technique is applied to measure the detailed heat transfer coefficient distributions inside the passages. Results for the three hole supply cases are compared with the results from the traditional 180° turn passage. Results show that the new feed system, from first pass to second pass using crossflow injection holes, produces significantly higher Nusselt numbers on the second pass walls. The enhancement is as high as 7–8 times greater than obtained in the second pass for a channel with a 180° turn. The additional pressure drop (rise in friction factor) caused by flow through the crossflow holes is compensated by the significant heat transfer enhancement obtained by the new configuration.


2000 ◽  
Vol 122 (3) ◽  
pp. 587-597 ◽  
Author(s):  
S. V. Ekkad ◽  
G. Pamula ◽  
S. Acharya

Detailed heat transfer distributions are presented inside a two-pass coolant channel with crossflow-induced swirl and impingement. The impingement and passage crossflow are generated from one coolant passage to the adjoining coolant passage through a series of straight or angled holes along the dividing wall. The holes provide for the flow turning from one passage to another typically achieved in a conventional design by a 180-deg U-bend. The holes direct the flow laterally from one passage to another and generate different secondary flow patterns in the second pass. These secondary flows produce impingement and swirl and lead to higher heat transfer enhancement. Three different lateral hole configurations are tested for three Reynolds numbers (Re=10,000, 25,000, 50,000). The configurations were varied by angle of delivery and location on the divider wall. A transient liquid crystal technique is used to measure the detailed heat transfer coefficient distributions inside the passages. Results with the new crossflow feed system are compared with the results from the traditional 180-deg turn passage. Results show that the crossflow feed configurations produce significantly higher Nusselt numbers on the second pass walls without affecting the first pass heat transfer levels. The heat transfer enhancement is as high as seven to eight times greater than obtained in the second pass for a channel with a 180-deg turn. The increased measured pressure drop (rise in friction factor) caused by flow through the crossflow holes are compensated by the significant heat transfer enhancement obtained by the new configuration. [S0022-1481(00)03103-0]


Author(s):  
Peng Zhang ◽  
Yu Rao ◽  
Yanlin Li

This paper presents a numerical study on turbulent flow and heat transfer in the channels with a novel hybrid cooling structure with miniature V-shaped ribs and dimples on one wall. The heat transfer characteristics, pressure loss and turbulent flow structures in the channels with the rib-dimples with three different rib heights of 0.6 mm, 1.0 mm and 1.5 mm are obtained for the Reynolds numbers ranging from 18,700 to 60,000 by numerical simulations, which are also compared with counterpart of a pure dimpled and pure V ribbed channel. The results show that the overall Nusselt numbers of the V rib-dimple channel with the rib height of 1.5 mm is up to 70% higher than that of the channels with pure dimples. The numerical simulations show that the arrangement of the miniature V rib upstream each dimple induces complex secondary flow near the wall and generates downwashing vortices, which intensifies the flow mixing and turbulent kinetic energy in the dimple, resulting in significant improvement in heat transfer enhancement and uniformness.


2003 ◽  
Vol 125 (2) ◽  
pp. 274-280 ◽  
Author(s):  
H. K. Moon ◽  
T. O’Connell ◽  
R. Sharma

The heat transfer rate from a smooth wall in an internal cooling passage can be significantly enhanced by using a convex patterned surface on the opposite wall of the passage. This design is particularly effective for a design that requires the heat transfer surface to be free of any augmenting features (smooth). Heat transfer coefficients on the smooth wall in a rectangular channel, which had convexities on the opposite wall were experimentally investigated. Friction factors were also measured to assess the thermal performance. Relative clearances δ/d between the convexities and the smooth wall of 0, 0.024, and 0.055 were investigated in a Reynolds number ReHD range from 15,000 to 35,000. The heat transfer coefficients were measured in the thermally developed region using a transient thermochromic liquid crystal technique. The clearance gap between the convexities and the smooth wall adversely affected the heat transfer enhancement NuHD. The friction factors (f ), measured in the aerodynamically developed region, were largest for the cases of no clearance δ/d=0). The average heat transfer enhancement Nu¯HD was also largest for the cases of no clearance δ/d=0, as high as 3.08 times at a Reynolds number of 11,456 in relative to that Nuo of an entirely smooth channel. The normalized Nusselt numbers Nu¯HD/Nuo, as well as the normalized friction factors f/fo, for all three cases, decreased with Reynolds numbers. However, the decay rate of the friction factor ratios f/fo with Reynolds numbers was lower than that of the normalized Nusselt numbers. For all three cases investigated, the thermal performance Nu¯HD/Nuo/f/fo1/3 values were within 5% to each other. The heat transfer enhancement using a convex patterned surface was thermally more effective at a relative low Reynolds numbers (less than 20,000 for δ/d=0) than that of a smooth channel.


Author(s):  
Ryan Hebert ◽  
Srinath V. Ekkad ◽  
Vivek Khanna ◽  
Mario Abreu ◽  
Hee-Koo Moon

Impingement heat transfer is significantly affected by initial cross-flow or by the presence of cross-flow from upstream spent jets. In this study, a zero cross-flow design is presented. The zero-crossflow design creates spacing between hole arrays to allow for spent flow to be directed away from impinging jets. Three configurations with different impingement holes placements are studied and compared with pure impingement with spent crossflow cases for the same jet Reynolds number. Three jet Reynolds numbers are studied for Rej = 10000, 20000, and 30000. Detailed heat transfer distributions are obtained using the transient liquid crystal technique. The zero-cross flow design clearly shows minimal degradation of impingement heat transfer due to crossflow compared to conventional design with lower mass flow rate requirement and lesser number of overall impingement holes due to the reduced cross-flow effect on the impingement region.


Author(s):  
G. V. Kovalenko ◽  
A. A. Khalatov

This paper provides the primary results of an experimental study into the fluid flow and heat transfer features at a cross-flow of a dimpled tube in a rectangular-shaped duct between two adjacent dimpled tubes. The cylindrical dimples were engraved on each tube surface both in the staggered and in-line mode; altogether nine dimpled tubes were tested in the range of the Reynolds number Re from 8,000 to 115,000. The first group (four samples) represents tubes structured with symmetrical dimples drilled in the radial direction, while the second group (five samples) is tubes with asymmetrical dimples. In the latter case each dimple was made in such a way that its axis is parallel to the tube diameter with a certain clearance between axes. For comparisons a row of smooth tubes of the same configuration was tested under identical fluid boundary conditions. Three factors primarily influencing heat transfer are under consideration in this paper: a) increase in a heat exchange surface due to a tube dimpling, b) variations in the flow pattern, c) interaction between boundary layer and main flow. Behind a smooth tube in confined space the reverse flow zone grows initially to Re = 37,000 however decreases at larger Reynolds numbers. Unlike this, behind a dimpled tube in confined space the reverse flow zone reduces at low Reynolds numbers to reach minimum magnitude at Re = 10,000–28,000, and increases afterwards to become approximately constant at Reynolds numbers over 45,000. It has been found, the reverse flow length depends on the Reynolds number, dimple parameters and configuration. The frequency spectrum of the dimpled tube is different from that occurring for a smooth tube. A few frequency ‘picks’ with corresponding the Strouhal numbers were registered including those typical to a single dimple on a flat plate. The heat transfer enhancement rates of around 45%–55% compared with a smooth tube in confined space were obtained depending on dimple parameters and flow regimes. Increase in the heat transfer enhancement rate for tubes with shallow dimples exceeds growth of heat exchange surface due to a dimpling. Increases in a pressure drop at the tube bundle caused by dimpling do not exceed 14%.


2011 ◽  
Vol 134 (3) ◽  
Author(s):  
Florian Hoefler ◽  
Simon Schueren ◽  
Jens von Wolfersdorf ◽  
Shailendra Naik

Heat transfer measurements of a confined impingement cooling configuration with ribs on the target surfaces are presented. The assembly consists of four nonperpendicular walls of which one holds two rows of staggered inclined jets, each impinging on a different adjacent wall. The ribs are aligned with the inclined jet axes, have the same pitch, and are staggered to the impinging jets. The flow exhausts through two staggered rows of holes opposing the impingement wall. The passage geometry is related to a modern gas turbine blade cooling configuration. A transient liquid crystal technique was used to take spatially resolved surface heat transfer measurements for the ground area between the ribs. A comparison with the smooth baseline configuration reveals local differences and a generally reduced heat transfer for the rib-roughened case. Furthermore, lumped heat capacity measurements of the ribs yielded area averaged heat transfer information for the ribs. From the combination of ground and rib heat transfer measurements, it is concluded that the overall performance of the ribbed configuration depends on the Reynolds number. Of the five investigated jet Reynolds numbers from 10,000 to 75,000, only for the highest Re the averaged Nusselt numbers increase slightly compared with the smooth baseline configuration.


Sign in / Sign up

Export Citation Format

Share Document