scholarly journals Extremum Seeking for Wind and Solar Energy Applications

2014 ◽  
Vol 136 (03) ◽  
pp. S13-S21 ◽  
Author(s):  
Azad Ghaffari ◽  
Miroslav Krstic ◽  
Sridhar Seshagiri

This paper explores the advantages of extremum seeking (ES) for wind and solar energy applications. The experimental results are also provided for the photovoltaic system. ES is an attractive alternative to perturb and observe (P&O) techniques for solving maximum power point tracking (MPPT) problems in wind and solar systems. As a model-free, real-time optimization approach, ES is well suited for systems with unknown dynamics or those that are affected by high levels of uncertainty or external dynamics, like wind turbines (WT) and PV systems. ES has the dual benefit of rigorously provable convergence and the simplicity of hardware implementation. In addition to a probing signal, the ES algorithm employs only an integrator, as well as optional high-pass and a low-pass filters. Finally, multivariable MPPT based on ES for PV systems are presented, and the validity of the proposed algorithms with experimental results are verified. Experimental results verify the effectiveness of the Newton-based MPPT versus its scalar and multivariable gradient-based counterparts.

2015 ◽  
Vol 787 ◽  
pp. 227-232 ◽  
Author(s):  
L.A. Arun Shravan ◽  
D. Ebenezer

In recent years there has been a growing attention towards use of solar energy. Advantages of photovoltaic (PV) systems employed for harnessing solar energy are reduction of greenhouse gas emission, low maintenance costs, fewer limitations with regard to site of installation and absence of mechanical noise arising from moving parts. However, PV systems suffer from relatively low conversion efficiency. Therefore, maximum power point tracking (MPPT) for the solar array is essential in a PV system. The nonlinear behaviour of PV systems as well as variations of the maximum power point with solar irradiance level and temperature complicates the tracking of the maximum power point. This paper reviews various MPPT methods based on three categories: offline, online and hybrid methods. Design of a PV system in a encoding environment has also been reviewed here. Furthermore, different MPPT methods are discussed in terms of the dynamic response of the PV system to variations in temperature and irradiance, attainable efficiency, and implementation considerations.


2021 ◽  
Vol 3 (3) ◽  
pp. 582-600
Author(s):  
Farhad Khosrojerdi ◽  
Stéphane Gagnon ◽  
Raul Valverde

The performance of a photovoltaic (PV) system is negatively affected when operating under shading conditions. Maximum power point tracking (MPPT) systems are used to overcome this hurdle. Designing an efficient MPPT-based controller requires knowledge about power conversion in PV systems. However, it is difficult for nontechnical solar energy consumers to define different parameters of the controller and deal with distinct sources of data related to the planning. Semantic Web technologies enable us to improve knowledge representation, sharing, and reusing of relevant information generated by various sources. In this work, we propose a knowledge-based model representing key concepts associated with an MPPT-based controller. The model is featured with Semantic Web Rule Language (SWRL), allowing the system planner to extract information about power reductions caused by snow and several airborne particles. The proposed ontology, named MPPT-On, is validated through a case study designed by the System Advisor Model (SAM). It acts as a decision support system and facilitate the process of planning PV projects for non-technical practitioners. Moreover, the presented rule-based system can be reused and shared among the solar energy community to adjust the power estimations reported by PV planning tools especially for snowy months and polluted environments.


2017 ◽  
Vol 32 (1) ◽  
pp. 57
Author(s):  
Francisca Valdelice Pereira Silva ◽  
Hernandes Oliveira Feitosa ◽  
Claudio Faustino Pereira ◽  
João Alvino Sampaio Silva ◽  
Erialdo Oliveira Feitosa

Atualmente há uma preocupação na utilização de energia solar como meios alternativos, tendo em vista a viabilidade para implantação dos sistemas fotovoltaicos. Sendo de extrema importância nos tempos atuais devido à necessidade de utilização de novas fontes de energia renováveis. O objetivo desse trabalho é analisar a viabilidade econômica do uso da energia solar na agricultura familiar irrigada no município de Barbalha. O trabalho foi desenvolvido a partir de dados coletados na Estação Climatológica, localizada em Barbalha, numa série histórica de 30 anos, esses dados foram inserido num programa computacional Retscreen para analisar a viabilidade de projetos, foi feita uma simulaçao do sistema fotovoltaico para geração de energia acionando um conjunto motobomba de 1,0 cv para transportar água a uma caixa com capacidade de 1000 l á 6 m de altura, em seguida será realizada a irrigação por gotejamento de forma gravitacional numa área de 1 há cultivado com milho. Os resultados foram que o sistema só terá um retorno financeiro em 18,5 anos, passando essa energia solar para os agricultores verificamos que somando todos os custos do agricultor será de R$ 7710,00 com uma receita bruta de R$ 11963,52 durante dez meses período em que se podem cultivar dois ciclos de milho irrigado, obtendo uma receita liquida de R$ 4253,52. Assim, o agricultor poderá pagar o investimento da energia fotovoltaica em menos tempo. O sistema mostra-se vantajoso nestes aspectos e abre uma interessante perspectiva de aproveitamento mais eficiente da energia solar na irrigação.Palavras-chave: energia solar; sistemas fotovoltaicos; viabilidade econômica. SOLAR ENERGY POTENTIAL FOR IRRIGATION IN THE MUNICIPALITY OF BARBALHA-CEAbstract: Currently there is concern in the use of solar energy as alternative means in order to implement the viability of PV systems. It is of paramount importance in the present times due to the necessity of use of new renewable energy sources. The aim of this study is to analyze the economic feasibility of using solar energy in irrigated family farming in the municipality of Barbalha. The work was developed from data collected in the Climatological Station, located in Barbalha, a historical series of 30 years, this data is inserted into a computer program Retscreen Software to analyze the feasibility of projects, it was made a Simulation of the photovoltaic system for generating energy driving a pump of 1.0 hp to carry water to a box with 1000 l capacity with 6 m high, then will be held drip irrigation of gravity form an area of 1 is cultivated with milho.Os results were the system will only have a financial return approximately 18.5 years, passing this energy for farmers we found that adding all the farmer's cost will be R $ 7,710.00 with gross revenues of R $ 11,963.52 for ten month period in that can grow two cycles of irrigated corn, obtaining a net income of R $ 4,253.52. Thus, the farmer can afford the investment of photovoltaics in less time. The system seems advantageous in these aspects and opens an interesting perspective more efficient use of solar energy for irrigation. Keywords: solar energy; photovoltaics; economic viabilit.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012123
Author(s):  
Vinay Kumar ◽  
T Naveen Kumar ◽  
K T Prajwal

Abstract As an increased demand in power resources and to reduce global warming, Renewable Energy Sources (RES) are preferred over the conventional sources. Among various available RES, solar energy is the effective and efficient one. The solar energy is also clean and free energy. The use of Maximum Power Point Tracking (MPPT) is the one of the techniques to get maximized output power from the Photo Voltaic (PV) system. The proposed method uses a voltage sensor by eliminating the need of current sensor based on selected technique using Partial Swarm Optimization (PSO) technique interfaced with DC-DC boost converter. PSO technique is one of the methods which has high conflux speed, to precisely track the maximum power. The result of the planned methodology is studied with the assistance of an acceptable simulation applied in MATLAB/Simulink setting for experiment to valid of microcontroller which is employed. The result obtained from the simulations studies showed that current sensor less methodology using PSO technique can extract the maximize power from PV systems.


2021 ◽  
Author(s):  
Daniel Escobar-Naranjo ◽  
Biswaranjan Mohanty ◽  
Kim A. Stelson

Abstract Adaptive control strategies are commonly used for systems that change over time, such as wind turbines. Extremum Seeking Control (ESC) is a model-free real-time adaptive control strategy commonly used in conventional gearbox wind turbines for Maximum Power Point Tracking (MPPT). ESC optimizes the rotor power by constantly tuning the torque control gain (k) when operating below rated power. The same concept can be applied for hydrostatic wind turbines. This paper studies the use of ESC for a 60-kW hydrostatic wind turbine. First, a systematic approach to establish the ideal ESC is shown. Second, a comparison of the power capture performance of ESC versus the conventional torque control law (the kω2 law) is shown. The simulations include a timesharing power capture coefficient (Cp) to clearly show the advantages of using ESC. Studies under steady and realistic wind conditions show the main advantages of using ESC for a hydrostatic wind turbine.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
R. Leyva ◽  
C. Olalla ◽  
H. Zazo ◽  
C. Cabal ◽  
A. Cid-Pastor ◽  
...  

The paper analyses extremum-seeking control technique for maximum power point tracking circuits in PV systems. Specifically, the paper describes and analyses the sinusoidal extremum-seeking control considering stability issues by means a Lyapunov function. Based on this technique, a new architecture of MPPT for PV generation is proposed. In order to assess the proposed solution, the paper provides some experimental measurements in a 100 W prototype which corroborate the effectiveness of the approach.


Author(s):  
Ms Rucha P.Kawde ◽  
Dr. Subhada Muley

Electricity plays an important role in every aspect of life. Day by day as the digitalization is increasing the need of electricity is also increasing. Till now the production of electricity was totally dependent on conventional energy sources. But with increasing load demand these sources are getting exhausted rapidly. So, to reduce dependency on conventional energy sources we have already switched over to non-conventional energy sources which includes solar, wind, hydro, tidal etc. It is found that maximum electricity can be generated using solar energy. Various technologies are invented regarding the tracking of solar energies. Maximum power point tracking is the most popular technique among all which ensures the maximum use of solar energy to get converted into electricity. This paper represents one such method of MPPT i.e., Incremental conductance. The algorithm of incremental conductance with simulations result obtained in MATLAB is briefly discussed in this paper.


2018 ◽  
Vol 218 ◽  
pp. 02003
Author(s):  
Rhezal Agung Ananto ◽  
Rudy Setiabudy

Nowdays, energy demand increase every years. Some obstacles stand in the way of energy supply. Some obstacles are energy limitation, climate change and environmental regulation. The change of conventional energy to renewable energy is the future solution. The development of renewable energy is the main priority, based on Indonesian government regulations. The potential of solar energy in Indonesia is very large because it is located in the equator. The research tries to measure solar energy in Indonesia region, it use atmega328p microprocessor logger and INA219 current sensor module. The measurement result is used to determine the photovoltaic stand-alone system performance. Measurement variables are sun irradiance, voltage, current, power, energy and temperature. The research method is measurement comparison between photovoltaic system with maximum power point tracking (MPPT) and without MPPT. Sun irradiation measurement with solar power meter is compared with sun irradiation data from NASA. Performance Ratio of the photovoltaic system with MPPT is better than the photovoltaic system without MPPT, the best photovoltaic system with MPPT Performance Ratio (PR) result is 0.93.


Sign in / Sign up

Export Citation Format

Share Document