scholarly journals Supersonic Cascade Interaction

Author(s):  
H. J. Lichtfuss ◽  
H. Starken

The supersonic flow adjustment between two interacting blade rows is predicted theoretically. One of both cascades may have a constant velocity in the circumferential direction. The calculation is carried out in a quasi-stationary manner. This represents an exact solution if the constant inlet and outlet flow conditions are solely under the scope of view. Admitting the above assumptions it is possible to calculate the uniform outlet flow of the first and the associated inlet flow of the second cascade as a function of the circumferential velocity. Quantitative results are presented for flat plate cascades. However, the method is not at all restricted to these simple cases.

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1264
Author(s):  
Vladimir V. Uchaikin ◽  
Renat T. Sibatov ◽  
Dmitry N. Bezbatko

One-dimensional random walks with a constant velocity between scattering are considered. The exact solution is expressed in terms of multiple convolutions of path-distributions assumed to be different for positive and negative directions of the walk axis. Several special cases are considered when the convolutions are expressed in explicit form. As a particular case, the solution of A. S. Monin for a symmetric random walk with exponential path distribution and its generalization to the asymmetric case are obtained. Solution of fractional telegraph equation with the fractional material derivative is presented. Asymptotic behavior of its solution for an asymmetric case is provided.


1980 ◽  
Vol 47 (4) ◽  
pp. 736-740 ◽  
Author(s):  
D. Durban

The process of the tube drawing between two rough conical walls is analyzed within the framework of continuum plasticity. Material behavior is modeled as rigid/linear-hardening along with the von-Mises flow rule. Assuming a radial flow pattern and steady state flow conditions it becomes possible to obtain an exact solution for the stresses and velocity. Useful relations are derived for practical cases where the nonuniformity induced by wall friction is small. A few restrictions on the validity of the results are discussed.


Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 67 ◽  
Author(s):  
Mohammad Alobaid ◽  
Ben Hughes ◽  
Andrew Heyes ◽  
Dominic O’Connor

The main objective of this study was to investigate the effect of inlet temperature (Tin) and flowrate ( m ˙ ) on thermal efficiency ( η t h ) of flat plate collectors (FPC). Computational Fluid Dynamics (CFD) was employed to simulate a FPC and the results were validated with experimental data from literature. The FPC was examined for high and low level flowrates and for inlet temperatures which varied from 298 to 373 K. Thermal efficiency of 93% and 65% was achieved at 298 K and 370 K inlet temperature’s respectively. A maximum temperature increase of 62 K in the inlet temperature was achieved at a flowrate of 5 × 10−4 kg/s inside the riser pipe. Tin and m ˙ were optimised in order to achieve the minimum required feed temperature for a 10 kW absorption chiller.


1995 ◽  
Vol 36 (6) ◽  
pp. 844-847
Author(s):  
V. I. Lysenko ◽  
N. V. Semenov
Keyword(s):  

1997 ◽  
Vol 50 (11S) ◽  
pp. S232-S236
Author(s):  
Alvaro Valencia

The incompressible laminar flow in a channel with a backward-facing step is studied for steady cases and for pulsating inlet flow conditions. For steady flows, the influrnce of the inlet velocity profile, the height of the step, and the Reynolds number on the reattachment length is investigated. A parabolic entrance profile was used for pulsating flow. It was found with amplitude of oscillation of one by Re = 100 that the primary vortex breakdown through one pulsatile cycle and the wall shear stress in the separation zone varied markedly with pulsating inlet flow.


Sign in / Sign up

Export Citation Format

Share Document